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Abstract
In traditional medicine, natural silk is regarded as a cognitive enhancer and a cure for ameliorating the symptoms of heart disease, 
atherosclerosis, and metabolic disorders. In this review, general characteristics of both silk proteins, fibroin and sericin, extracted 
from silkworm Bombyx mori and their potential use in the neuronal disorders was discussed. Evidence shows that silk proteins exhibit 
neuroprotective effects in models of neurotoxicity. The antioxidant, neuroprotective, and acetylcholinesterase inhibitory mechanisms 
of silk proteins could prove promising in the treatment of neurodegenerative diseases. Owing to their excellent neurocompatibility and 
physicochemical properties, silk proteins have been used as scaffolds and drug delivery materials in the neuronal tissue engineering. 
These data support the potential of silk proteins as an effective complementary agent for central and peripheral neurological disorders.
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Highlights:
•	Silk proteins may hold promising alternatives for the treatment of neurodegenerative diseases.
•	Silk proteins diminish oxidative stress damage and enhance enzymatic antioxidant activity.
•	Silk proteins have potential to be used in neuroregeneration.
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Introduction

Silkworm, the larva or caterpillar of the domesticated silk-
moth (Bombyx mori), commercially viable in the production of 
silk. Silkworms depend upon the leaves of the mulberry trees 
as	 food	(Ahsan	et	al.,	2018).	Excellent	physical	properties	of	
silk, such as lightweight, high mechanical strength, and flex-
ibility, make it appropriate to produce new biomaterials with 
application in tissue repair and drug delivery (Florczak et al., 
2014). Silk has been commonly used for centuries as a suture 
material for wound treatment. Besides the vast application of 
silk in the textile industry, it has been widely used in tradi-
tional medicine as a home-made remedy for improving a broad 
range of health-related complications, particularly in the car-
diac and nervous system (Nazmi et al., 2011). In Unani med-
icine, the silk is known as Abresham muqriz (muqriz means 
cut). Its cocoons are broadly used as an ingredient for sever-
al	Unani	formulations	including	Khamira	Abresham	Hakeem	

Arshad	 Wala	 (KAHAW),	 Khameer-E-Abresham	 Sada,	 and	
Khameere	Abresham	Ood	Mastagi	Wala	(Ahsan	et	al.,	2018).	
Avicenna introduced silk (Abresham) as a strong exhilarant, 
cardiotonic,	 and	 cardioprotective	 substance	 (Hameed,	 1983;	
Sina, 1995). Further, the Food and Drug Administration 
(FDA) has approved silk medical devices for sutures and as a 
support structure during reconstructive surgery. Also, silk has 
recently gained attention in developing degradable electronic 
and	photonic	implantable	medical	devices	(Huang	et	al.,	2018;	
Preda	et	al.,	2013).	Silk	proteins	have	antidiabetic,	anti-hyper-
cholesterolemic and metabolic modulator, cardioprotective, 
anti-tumor, antioxidant, anti-bacterial, wound healing, cell 
proliferation, UV protection, and cryopreservation (Ahsan et 
al.,	2018;	Padamwar	and	Pawar,	2004).

The silkworm cocoon is a single continuous and lustrous 
raw silk strand with approximately 700–1500 m length, which 
protects silkworms against invasion by natural predators and 
environmental damage enhancing survival chance of silkworm 
(Zhang et al., 2013). Cocoon silk shows structural stability ow-
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ing to the abundance of anti-protease proteins that improve 
the silk resistance (Zhang et al., 2017).

In spite of the extensive use of silk proteins, there is no 
comprehensive review regarding its neurological activities and 
applications. In this review, firstly, we will discuss the features 
of silk proteins, including fibroin and sericin, then their ap-
plications in the treatment of different neurological disorders 
and their possible mechanisms of action.

Silk proteins
The silk is a natural fiber composed of two essential proteins, 
mainly fibroin and sericin. Other minor natural impurities of 

raw silk include carbohydrate, inorganic salts, wax, and pig-
ment (Mondal, 2007). Silk fibroin, the structural center of 
the silk, is double strand insoluble protein, linked by disulfide 
bonds, has a semi-crystalline structure that consists 70% of 
the cocoon shell of B. mori. The fibroin shell constitutes the 
core of silk and is covered by successive sticky layers of sericin 
(Fig. 1). The structure of fibroin mainly consists of the repeat-
ed amino acid sequence (Gly-Ser-Gly-Ala-Gly-Ala)n that form 
antiparallel beta sheets (Qi et al., 2017). The high glycine con-
tent (45%) contributes to the unique structure of silk and its 
resistant to breaking.

 

Fig. 1. A schematic theme of the review

Silk fibroin is biologically degraded by proteolytic enzymes 
such as chymotrypsin, actinase, and carboxylase. Fibroin is ex-
tracted from the silkworm cocoon by removal of sericin mainly 
by a thermo-chemical procedure known as degumming. Most 
of the sericin is removed in the course of raw silk production, 
increasing the softness, luster, smoothness, and whiteness of 
silk fibers (Gupta et al., 2013). Fibroin filament is composed 
of both amorphous and crystalline domains. Brain factor-7 
(BF-7), a natural peptide extracted from B. mori, is prepared 
by enzymatic degradation of silk fibroin protein, in which raw 
silk is exposed to filtration and purification processes and pro-
teolysis. Briefly, silk cocoon is washed, and the outer sericin 
protein is removed. To open up protein sheet, the remaining fi-
broin is heated in the presence of calcium chloride so protease 
enzymes can digest fibroin protein into smaller proteins (Chae 
et al., 2004; Kim et al., 2009). BF-7 is a natural brain-nour-
ishing peptide extract in silk with a molecular weight range of 
500–5000 daltons. BF-7 is a protein hydrosylate with a β-sheet 
structure rich in glycine and alanine, which are crucial amino 
acids for proper neurotransmitter function and cellular ener-
gy production. It has good solubility in water and other aque-

ous solutions. Due to its small size, BF-7 can readily cross the 
blood-brain barrier, where it can affect the brain cell and pro-
mote	cognitive	function	(Kang	et	al.,	2018).

Sericin (20–310 kDa) is a hydrophilic and globular glyco-
protein that constitutes 20–30% of total cocoon weight. In-
deed, sericin is a glue-like protein that joins two fibroin fila-
ments	to	form	silk	yarn	(Mondal,	2007).	It	contains	18	amino	
acids,	8	of	them	are	essential	for	human,	and	a	high	content	
of hydrophilic amino acids, namely serine (30%) and glycine. 
Sericin has abundant polar side chains made of hydroxyl, car-
boxyl, and amino groups. Sericin exists mainly in a random coil 
and to a lesser extent in a β-sheet structure and is insoluble 
in	cold	water	 (Padamwar	and	Pawar,	2004).	 Its	organic	com-
position include 46.5% carbon, 31% oxygen, 16.5% nitrogen, 
and 6% hydrogen. The water solubility of sericin decreases by 
transforming from random coil to β-sheet structure. Isolation 
methods of sericin from silk thread affect its solubility, mo-
lecular weight, and gelling properties. Formerly, silk sericin 
was considered as a waste material of silk industry, but recent 
studies have proven its effectiveness in the pharmacological, 
biotechnological, and cosmetic applications such as wound 
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healing, antiwrinkle and antiaging (Mondal, 2007). Sericin is 
classified into three fractions upon their solubility and posi-
tion within the layer of the cocoon, including sericin A, B, and 
C. These fractions build up the layers found on the silk fibroin. 
Sericin A composed the outer layer and is more soluble in 
warm water. Sericin B is the intermediate layer, and sericin C is 
the innermost layer, or the closest to the fibroin (Larin, 1951).

Several methods are used for extraction of silk sericin such 
as hot water, gel electrophoresis, enzymes (trypsin, alkaline 
protease or alkylase), spray-drying method, and aqueous urea. 
The physicochemical properties of sericin rely on the technique 
of	sericin	isolation	(Padamwar	and	Pawar,	2004).	Silk	proteins	
can be processed in aqueous environments into various mate-
rial formats, including films, sponges, electrospun mats, and 
hydrogels (Cao and Zhang, 2016; Lamboni et al., 2015). In 

contrast to earlier studies (Celedón et al., 2001; Zaoming et 
al., 1996), recent studies showed that soluble sericin is immu-
nologically	inert	and	safe	(Chlapanidas	et	al.,	2013;	Panilaitis	
et al., 2003; Terada et al., 2005), proposing it a promising can-
didate for various biomedical applications. Given its unique 
properties such as antioxidant, antidiabetic, antihyperlipi-
demic, anti-inflammatory, skin moisturizing, healing, anti-
bacterial, antimicrobial protection, and antitumour (Table 1) 
(Aramwit	et	al.,	2012;	Kato	et	al.,	1998b;	Kunz	et	al.,	2016),	
sericin has been widely used in biomedical, tissue engineering, 
regenerative medicine, and pharmaceutical and food indus-
tries. Sericin by cross-linking and mixing with other polymers 
can form a desirable scaffold with application in the pharma-
ceutical and cosmetic preparations (Aramwit et al., 2012).

Table 1. Summary of important non-neurological properties of silk proteins

Effects Description Protein	type References

Antidiabetic 
effects

No nutritional effect
Reduce	blood	glucose	and	glycosylated	hemoglobin	(HbA1c)	levels,	improve	

glucose tolerance and increase insulin levels
Increase pancreatic β cell mass

Increase serum levels of the insulin-like growth factor-1 (IGF-1), growth 
hormone	(GH)	receptor,	and	adiponectin	levels

Decrease leptin and resistin levels
Reduce the body fat content, triglyceride, and total cholesterol levels, 

atherogenic index, free unsaturated fats, phospholipids, very low-density 
lipoproteins (VLDL), low-density lipoprotein (LDL), and free fatty acid level

Fibroin and 
Sericin

Chen et al., 2013
Do et al., 2012

Okazaki et al., 2010
Rattana et al., 2017

Seo et al., 2011

Cardioprotection

Protect	against	atherosclerosis
Protect	against	doxorubicin	(Dox)-induced	cardiotoxicity

Prevent	isoprenaline-induced	myocardial	damage	and	hypertrophy
Improve cardiac functional recovery after myocardial infarction

Sericin

Ali and Arumugam, 2011
Goyal et al., 2010
Khan et al., 2014

Srivastav et al., 2013

Antitumor 
and anti-
inflammatory 
effects

Decrease cell proliferation rate and oncogenes expression
Induce apoptosis of tumor cells by triggering the activity of pro-apoptotic 

proteins
Very low immunogenicity, reduce the release of interferon gamma (IFN-γ), 

tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-1β
Reduce	percentage	of	CD8a	and	CD80	cells,	and	increase	activity	of	natural	killer	

(NK) cells

Sericin and 
Fibroin

Aramwit et al., 2009
Chlapanidas et al., 2013

Keawkorn et al., 2012, 2013
Promphet	et	al.,	2014

Sasaki et al., 2000
Zhaorigetu et al., 2001

Vascular and 
circulation 
effects

Anticoagulant
Vasodilation and relaxation of the smooth muscle of the artery wall

Sericin
Onsa-Ard et al., 2013
Tamada et al., 2004

Tissue 
engineering

Act as chief ingredient for bioimaging, drug delivery, tissue regeneration, and 
scaffold for tissue regeneration

Sericin and 
Fibroin

Aramwit et al., 2015
Kurland et al., 2014
Panico	et	al.,	2018
Xiong	et	al.,	2017
Zhang et al., 2015

Wound healing
Improve skin repair and collagen production

Increase proliferation and migration of keratinocytes and fibroblasts into the 
injured area

Sericin
Aramwit and Sangcakul, 2007

Aramwit et al., 2010b
Liang et al., 2007

Cosmetic effects

Increase hydration and elasticity of the skin, antiaging and antiwrinkle, and skin 
conditioner, cleaning with less irritation

Protect	surface	hair	from	damage
Protect	nail	from	drying	and	fragility

Sericin
Ahsan	et	al.,	2018

Oshika	and	Naito,	1998
Wong et al., 2014

Application of silk proteins in neurological disorders

Alzheimer’s disease
Studies on neurodegenerative disorders, such as aging and 
Alzheimer’s disease (AD), appreciated the cognitive enhancing 
properties of sericin. As the most common type of demen-
tia, the AD is characterized by the formation of neurofibril-
lary tangles and amyloid plaques, brain atrophy, and loss of 
neurons resulting in memory impairments (Arborelius et al., 

1999). Cognitive impairments in AD are generally associated 
with reduced synthesis of the acetylcholine (ACh) and over-
production of reactive oxygen species (ROS) in the cerebral 
cognitive-related structures, such as the hippocampus and 
cerebral cortex. Studies in AD have supported the importance 
of the antioxidants and acetylcholinesterase (AChE) inhibi-
tor regimens for lessening of AD-related cognitive symptoms 
(Peera	and	Yellamma,	2015).
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Pro-cognitive	effect	of	BF-7	has	been	reported	in	both	an-
imal and human studies. Chae et al. (2004) have shown that 
BF-7 protects against amyloid-beta (Aβ)-induced apoptosis 
through the attenuation of ROS overproduction and inhibition 
of	caspase-3	activity	in	the	human	neuronal	cell.	Pretreatment	
of neuroblastoma cells with milk fortified with fibroin BF-7 for 
seven days decreased Aβ neurotoxicity and increased cell sur-
vival	rate	(Choi	et	al.,	2008).	BF-7	was	also	shown	to	protect	
the human neuronal cell against scopolamine-induced neuro-
toxicity in vitro, and attenuate memory impairments induced 
by scopolamine in vivo (Iborra et al., 2004). Moreover, BF-7 
(5 and 10 mg/kg/day for two weeks) increased ACh concentra-
tions in the brain of rats treated with Aβ (Kim et al., 2005). 
Fibroin BF-7 has also been demonstrated to improve learning 
and memory impairments in Aβ induced AD model and to at-
tenuate Aβ-induced apoptosis through decreasing intracellular 
calcium levels and ROS production, as well as inhibition of mi-
tochondrial dysfunction and caspase activity (Lee et al., 2007).

Ethylcholine mustard aziridinium ion (AF64A) is a presyn-
aptic cholinergic neurotoxin that causes alterations in mRNA 
expression and activity of choline acetyltransferase (ChAT), a 
necessary enzyme for ACh synthesis, resulting in a decrease of 
ACh release leading to memory and learning deficits (Walsh 
and Opello, 1994). Cha et al. (2017) have demonstrated that 
silk peptides treatment for five weeks in AT64A-induced AD 
model animals enhanced the expression of ChAT mRNA and 
increased ACh in the cerebrospinal fluid associated with im-
provement of cognitive deficits and suppression of hippocam-
pal astrocytic activation.

Brain aging
D-galactose can induce many features of brain aging and has 
been widely applied to study the mechanisms of brain aging 
in rodents (Sadigh-Eteghad et al., 2017). Several studies have 
demonstrated that cognitive dysfunction, along with aging 
arises from oxidative stress and mitochondrial dysfunction. 
Research shows that sericin can reverse the memory impair-
ments in D-galactose induced AD model through increasing 
ACh levels, inhibition of AChE activity, scavenging ROS, and 
the improvement of the antioxidant defense system in the 
hippocampus and cerebral cortex (Yellamma, 2014). It was re-
ported that pretreatment (for five weeks prior to D-galactose 
injection) with two enzymatically modified silk peptides in a 
D-galactose induced aging model showed that silk peptides ef-
fectively inhibit AChE activity in the brain while enhancing the 
expression of the ChAT in vitro. Moreover, these silk peptides 
exhibited cognition-improving activities in both learning and 
memory tasks accompanied by the increase of ACh release and 
decreased the number of hippocampal activated astrocytes 
(Park	 et	 al.,	 2011).	 Moreover,	 two	 months	 administration	
of silk sericin (200 mg/kg/day) has been shown to improve 
learning and memory impairments in the Morris water maze 
in	D-galactose-induced	AD	model	 in	 rats	 (Peera	 and	Yellam-
ma,	2013).	Peera	and	Yellamma	(2015)	also	reported	that	silk	
sericin improved D-galactose induced memory impairment 
through inhibition AChE activity and ultimately increasing 
ACh contents in the hippocampus and cerebral cortex, sug-
gesting neuroprotective effects of silk protein on the cholin-
ergic system. Another study showed positive effects of silk 
sericin on cognitive functions in D-galactose-induced AD mod-
el	 (Peera	 and	Yellamma,	2016).	Chen	et	 al.	 (2011)	have	 also	
demonstrated that sericin treatment improves learning and 
memory impairment induced by diabetes through attenuation 
of hippocampal nitric oxide (NO) contents and inhibition the 
nitric oxide synthase expression.

Anxiety and depression
Depression and anxiety are common psychiatric disorders 
worldwide.	 Preclinical	 and	 clinical	 evidence	 shows	 that	 neu-
roinflammation and oxidative stress in the structures involved 
in the regulation of mood and cognitive functions, hippocam-
pus	(HIP)	and	prefrontal	cortex	(PFC),	play	causative	roles	in	
the pathophysiology of these mood disorders (Banagozar Mo-
hammadi	et	 al.,	2019;	Haapakoski	 et	 al.,	2015;	Salehpour	et	
al., 2019).

Recently, our group showed that sericin administration 
(100, 150, and 200 mg/kg/day, for 21 days) attenuated anx-
iety-and depressive-like behaviors induced by restraint stress 
accompanied by reduced serum corticosterone concentration 
in mice. Moreover, sericin could markedly diminish ROS and 
lipid peroxidation levels, restore mitochondrial membrane 
potential, and enhanced enzymatic antioxidant defense in the 
HIP	and	PFC.	Furthermore,	these	results	were	associated	with	
suppression of neuroinflammatory response and mitochon-
drial-dependent	apoptosis	in	the	HIP	and	PFC	(Banagozar	Mo-
hammadi et al., 2019).

Stroke
Interruption of cerebral blood flow by a stroke can induce ox-
idative damage and neuroinflammation triggering brain dys-
function and cognitive impairments (Juurlink and Sweeney, 
1997; Leker and Shohami, 2002). The protective effect of BF-7 
on learning and memory deficits was also shown in the tran-
sient middle cerebral artery occlusion induced focal cerebral is-
chemia, which was associated with decreased size of infarcted 
areas and hippocampal neuronal cell death (Lee et al., 2005).

Nootropic
Chae et al. have reported that administration of BF-7 for one 
month improves learning and memory in healthy high school 
students (Chae et al., 2004). Clinical studies also showed that 
BF-7 improves short-term and long-term memories, cogni-
tive flexibility, and attention in healthy school children (Kim 
et al., 2009; Kim et al., 2010a). A double-blind, placebo-con-
trolled study reported that three weeks administration of 
BF-7 (200 and 400 mg) improved cognitive function in healthy 
adults in a dose-dependent manner (Lee et al., 2004). Silk fi-
broin BF-7 (400 mg/day for three weeks) was shown to en-
hance cognition through increasing glucose metabolism and 
blood supply to the brain structure involved in learning and 
memory including parahippocampal gyrus and medial tempo-
ral areas (Lee et al., 2004). Interestingly, a recent human study 
has found that three weeks administration of silk fibroin en-
zymatic	hydrolysate	 (0,	280,	400,	and	600	mg/day)	dose-de-
pendently improved verbal and visual memory and executive 
function with no adverse effects in healthy adults (Kang et al., 
2018).

Parkinson’s disease
Parkinson’s	 disease	 (PD)	 is	 a	 progressive	 neurodegenerative	
disorder associated with progressive loss of dopaminergic 
neurons mainly in the substantia nigra, thereby in dopamine 
depletion, and the accumulation of α-synuclein (Moore et al., 
2005). L-3,4-dihydroxyphenylalanine (L-DOPA)	is	a	dopamine	
precursor which has been used as a standard therapeutic for 
PD	which	reliefs	movement	impairments.	However,	long-term	
L-DOPA	 therapy	 can	 induce	 cytotoxicity	 by	 autoxidation	 to	
reactive species such as dopamine quinone, and overproduc-
tion	of	ROS	and	6-hydroxydopamine	(6-OHDA)	(Asanuma	et	
al., 2003). Tyrosinases are copper-containing enzymes that 
are involved in cancer and neurodegenerative diseases such as 
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PD.	Over‐expression	of	 tyrosinase	 induces	cell	death	by	trig-
gering	ROS	production	 in	neuroblastoma	 cells	 (Hasegawa	 et	
al.,	2008).	Evidence	also	shows	that	tyrosinase	is	involved	in	
both the hydroxylation of tyrosine to L-DOPA	and	the	subse-
quent oxidation of L-DOPA	to	dopamine	quinone,	and	there-
by exacerbates L-DOPA	neurotoxicity	 (Asanuma	et	 al.,	 2003;	
Greggio	 et	 al.,	 2005;	 Sánchez-Ferrer	 et	 al.,	 1995).	 Previous	
studies have reported that silk sericin has an antityrosinase 
activity	(Aramwit	et	al.,	2010a;	Kato	et	al.,	1998b).	Moreover,	
silk	peptides	were	shown	to	protect	against	6-OHDA-induced	
apoptotic neuronal death (Kim et al., 2011a). Interestingly, 
Kim et al. (2011b) have demonstrated that silk amino acid 
improves	motor	 impairments	 in	6-OHDA	 induced	PD	model	
through the preservation of the dopaminergic neurons against 
6-OHDA-induced	 neurotoxicity,	 and	 thus	 recovery	 of	 dopa-
mine concentration.

Monoamine oxidases (MAO) are a family of enzymes that 
control the breakdown of monoamines such as dopamine, ser-
otonin, and norepinephrine in the brain. MAO inhibitors pre-
vent the removing of these neurotransmitter from the brain, 
which makes these brain chemicals more available. MAO-A in-
hibitors have been widely used in the treatment of depression 
and psychiatric disorder, and MAO-B inhibitors in the treat-
ment	of	PD	(Youdim	and	Riederer,	2004;	Youdim	et	al.,	2006).	
Interestingly, administration of silkworm extract (20 mg/kg/
day for 14 days) in mice was reported to inhibit MAO-A activ-
ity, a dopamine-degrading enzyme, in the whole brain, cere-
bral cortex, and substantia nigra and MAO-B in the cerebellum 
and substantia nigra (Kang et al., 2005). Another study has 
shown that silkworm extract attenuated N-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine	(MPTP)-induced	dopamine	de-
pletion in the substantia nigra accompanied by inhibition of 
the activity of MAO-B in the substantia nigra, cerebellum, and 
whole brain (Kang et al., 2010). Therefore, based on above, it 
seems that silk peptides could be a promising candidate for the 
improvement	of	PD	symptoms.

Neurological lesions in diabetes
Diabetes is a metabolic disorder that is associated with im-
paired glucose tolerance, hyperglycemia, insulin resistance, 
and dyslipidemia ultimately initiating inflammation and ox-
idative stress in different tissues, particularly in the brain 
(Tangvarasittichai, 2015). A growing body of preclinical and 
clinical evidence linked diabetes to neurodegeneration disor-
ders and cognitive impairment (Verdile et al., 2015). The hip-
pocampus is known to be more prone to deleterious effects of 
the chronic hyperglycemia associated with diabetes. Indeed, 
chronic hyperglycemia associated with diabetes can result in 
apoptotic cell death of hippocampal neurons and abnormal 
volumetric changes in this structure, which ultimately lead 
to cognitive dysfunction (Chen et al., 2012; Mijnhout et al., 
2006). On the other hand, agents with antidiabetic effects can 
protect the brain against diabetes-induced neurodegenera-
tion and learning and memory impairments (Alagiakrishnan 
et	al.,	2013;	El-Mir	et	al.,	2008;	Patrone	et	al.,	2014).	In	this	
regard, previous studies have confirmed antidiabetic effects of 
silk	 proteins,	 evident	 by	 reducing	 glucose	 levels	 and	HbA1c,	
improving glucose tolerance and lipid profile, and increasing 
plasma insulin and adiponectin levels (Do et al., 2012; Jung et 
al., 2010; Kim et al., 2010b; Okazaki et al., 2010). Moreover, 
administration of sericin (2.4 g/kg/day for 35 days) can also 
reduce hippocampal neuronal apoptosis through promoting 
Akt signaling pathway and inhibition of pro-apoptotic BAD 
protein and its mRNA expression in type 2 diabetic rats (Chen 
et al., 2012).

The	 growth	 hormone	 (GH)/insulin-like	 growth	 factor	 1	
(IGF-1) axis is implicated in the growth and development of 
the CNS. Moreover, hippocampal expression of IGF-1 contrib-
utes to neuroprotection, synaptic regeneration, myelin for-
mation, and neuroregeneration following hippocampal injury 
(Shangguan	and	Shi,	 2007).	 In	diabetes	owing	 to	GH	 resist-
ance	and	reduced	IGF-1	levels	and	expression	of	GH	receptor,	
GH/IGF-1	axis	undergoes	abnormal	changes,	which	results	in	
abnormal blood glucose levels and accordingly aggravate the 
disease progression and complications (Chiarelli et al., 2004; 
Kim et al., 2006). Given that IGF-1 has an anti-apoptotic ef-
fect, a decrease in IGF-1 expression in the diabetic brains 
may induce hippocampal neuronal apoptosis and cognitive 
impairments (Cardona-Gómez et al., 2001; Feldman et al., 
2002;	Wine	et	al.,	2009).	However,	administration	of	sericin	 
(2.4 g/kg/day for 35 days) has been shown to attenuate hip-
pocampal damage in diabetic rats through the improvement 
of	the	GH/IGF-1	axis	(Chen	et	al.,	2013).	Furthermore,	chronic	
administration of sericin has been demonstrated to decrease 
overexpression of heme oxygenase-1 in the hippocampal CA1 
subfield	and	cerebral	cortex	of	diabetic	rats	(He	et	al.,	2011).	
In addition, chronic silk sericin can decrease nitric oxide (NO–) 
contents in the hippocampus of diabetic rats (Li et al., 2012). 
Sercin has also been reported to protect against diabetes-in-
duced peripheral nerve injury, namely sciatic nerve, through 
increasing the expression of nerve growth factor and neurofil-
ament protein expression, the primary marker identifying the 
function of synapses, in L4-6 spinal ganglion and anterior horn 
cells. Moreover, sericin ameliorates nerve tissue ischemia and 
hypoxia induced by vasoconstriction and inhibition of neuro-
transmitter release due to excessive neuropeptide Y in diabetic 
rats (Song et al., 2013; Zhao et al., 2012).

Antioxidant potential
Oxidative stress damage is caused by an imbalance between 
free radicals formation and detoxification capacity of cells 
(Fridovich,	 1986;	 Halliwell	 and	 Gutteridge,	 2015),	 resulting	
in DNA fragmentation, lipid peroxidation, and protein oxida-
tion and thereby cell death (Maes et al., 2009a, b, 2011). Due 
to large amounts of polyunsaturated fatty acids, high oxygen 
demand, and limited antioxidant capacity, brain tissue is vul-
nerable to oxidative stress disrupting neurotransmission and 
neuronal	functions	(Cobley	et	al.,	2018;	Hulbert	et	al.,	2007;	
Salim, 2017; Shichiri, 2014). Oxidative stress plays a causa-
tive role in the pathophysiology of common neurodegenera-
tive	diseases,	especially	in	PD	and	AD.	Therefore,	agents	with	
the antioxidant property have been proposed for the preven-
tion and treatment of neurodegenerative diseases (Kim et al., 
2015).

The many medicinal advantages of silk can be attributed to 
its high antioxidant potential that confers protection against 
free radicals and oxidative damage. The mechanism under-
lying antioxidant property of sericin is related to its amino 
acid sequence and high content of hydroxyl amino acids such 
as serine and threonine, which enable chelating of free radi-
cals and ROS. Importantly, the extraction methods may sig-
nificantly affect the antioxidant activity of silk by affecting 
its molecular and functional properties such as contents of 
amino acids and polyphenol, molecular weight, and peptide 
length (Kumar and Mandal, 2017). In this regard, silk sericin 
extracted by urea displays the maximum antityrosinase activi-
ty, while alkali-degraded silk sericin cannot inhibit mushroom 
tyrosinase	 (Aramwit	 et	 al.,	 2010a).	 Kato	 et	 al.	 (1998a)	 have	
reported antioxidant effects of 0.3% sericin in the rat brain 
homogenate that was shown by decreased lipid peroxidation 
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assessed by thiobarbituric acid reactive substances (TBARS). 
Moreover, sericin can increase enzymatic antioxidant activity 
(Dash	et	al.,	2008;	Kumar	and	Mandal,	2017).	Sericin	at	dose	 
0.25 g/kg has also been shown to protect the brain against ox-
idative stress induced by high-cholesterol diet in rats through 
attenuation the level of protein carbonylation and augmenta-
tion	of	 the	glutathione	 (GSH)	 levels	 in	 the	brain	 tissue	 (De-
ori et al., 2016). Among the different mechanisms involved in 
Aβ-induced neurotoxicity and apoptosis, ROS accumulation 
had	received	more	attention	(Hureau	and	Faller,	2009;	Zawia	
et al., 2009). BF-7 was shown to attenuate Aβ-induced apop-
tosis through decreasing ROS generation in vitro (Chae et al., 
2004; Kim et al., 2005). Moreover, silk sericin was reported 
to enhance the antioxidant activity of superoxide dismutase 
(SOD), catalase (CAT), and glutathione reductase (GR) en-
zymes in the cerebral cortex and hippocampus of D-galactose 
received	 rats	 (Peera	 and	 Yellamma,	 2016).	 A	 recent	 in vitro 
study	 has	 found	 that	 silk	 fibroin	 hydrosylate	 protected	 SH-
SY5Y neuroblastoma cells and primary hippocampal neurons 
against Aβ25–35 induced apoptotic cell death and increased cell 
viability. The proposed mechanisms for its neuroprotection 
effects were attenuation of ROS accumulation, restoration of 
mitochondrial membrane potential, up-regulation of gene ex-
pression of SOD, inhibition the cleavage of pro-caspase 3 and 
the	activation	of	MAPKs	cascade,	and	suppression	of	protein	
phosphatase	2A	(PP2A)	phosphorylation	and	thereby	 inhibi-
tion	of	tau	hyperphosphorylation	(Xu	et	al.,	2018).	NO– is an-
other cause for neuronal cell damages and its reaction with O2 
forms peroxynitrite (ONOO–) that is highly reactive (Brieger 
et al., 2012). Li et al. (2012) have reported that silk sericin can 
decrease nitric oxide content in the hippocampus of diabetic 
rats. BF-7 (10 μM) was shown to protect neuroblastoma cell 
against FeSO4-induced apoptosis through attenuation of ROS 
accumulation (Lee et al., 2004). Based on the above, it seems 
that silk proteins have potential applications in the treatment 
of AD.

Neuroregeneration
The central or peripheral nerve injuries can lead to life-long 
disability, substantial work leave, and health care expenses. 
Therefore, nerve regeneration remains a major challenge in 
the clinic. Neural tissue engineering is a rapidly expanding re-
search field aiming at nerve repair and regeneration (Gurgo et 
al., 2002; Ishihara et al., 2011).

Given their particular properties such as biocompatibility, 
low immunogenicity, slow degradation, flexibility, optimal me-
chanical strength, compatibility with sterilization methods, 
and FDA approval, silk proteins exhibit attractive potential 
applications in the neural tissue engineering and drug delivery 
(Hopkins	et	al.,	2013;	Li	et	al.,	2013).	Wang	et	al.	(2015)	used	
pure sericin hydrogel for ischemic neuronal tissue repair and 
demonstrated that sericin has neurotrophic and neuroprotec-
tive functions and prevents hypoxia and low glucose-induced 
cortical	neuron	death	by	modulation	of	the	Bcl-2/BAX	protein	
ratio and promotes the growth of primary neurons. In an in 
vitro study silk fibroin hydrolysate has been shown to protect 
neuronal	cells	against	hydrogen	peroxide	(H2O2) induced neu-
rotoxicity by increased cell viability, which was attributed to 
its aromatic amino acids contents such as tyrosine and phe-
nylalanine (Yeo et al., 2006). Moreover, silk fibroin has been 
proposed as an appropriate biomaterial for neural tissue en-
gineering in the peripheral and central nervous system (CNS) 
therapies due to its good neurobiocompatibility. An in vitro 
study showed that administration of silk fibroin fiber to the 
cultured rat dorsal root ganglia (DRG) supports cell outgrowth 

from DRG and silk fibroin extract fluid improves survival of 
Schwann cells from rat sciatic nerves with no remarkable cy-
totoxicity (Yang et al., 2007a). Three-dimensional (3D) silk fi-
broin with uniaxial multichannels directs the axonal adhesion 
and elongation of primary hippocampal neurons (Zhang et al., 
2012). Furthermore, silk fibroin-based nerve graft has been 
shown to promote peripheral nerve regeneration in a rat mod-
el of sciatic nerve injury (Yang et al., 2007b). Tang et al. have 
also demonstrated that silk fibroin fibers promote the survival 
and growth of rat hippocampal neurons and administration 
of silk fibroin extract into the cell culture medium exerts no 
cytotoxic effects on the hippocampal neurons phenotype or 
functions (Tang et al., 2009). The tolerability of the implan-
tation of silk fibroin hydrogels into the mice striatum has also 
been reported without inducing cell death or cognitive and 
sensorimotor deficits (Fernández-García et al., 2016). It has 
been demonstrated that electrospun silk fibroin nanofibers 
promote the growth and expansion of the Schwann cells, sug-
gesting that silk fibroin can promote the regeneration of axons 
following	axotomy	and	nerve-crush	traumas	(Hu	et	al.,	2012).	
Moreover, in an in vitro model of traumatic optic neuropathy, 
electrospun silk fibers loaded with growth factor were report-
ed to promote survival and neurite outgrowth of the retinal 
ganglion cells (Wittmer et al., 2011). A recent in vivo study has 
also shown that topical sericin combined with swimming ex-
ercise improved sciatic nerve injury in Wistar rats (Debastiani 
et al., 2019).

 
Conclusions

Based on above, silk proteins play an effective role in the 
improvement of the brain function and provide protection 
against many neurodegenrative disorders. Moreover, silk pro-
teins have biocompatibility, easy availability, and negligible 
immunogenicity, which make them a cost-effective and prom-
ising biomaterial in neuroregenerative medicine with vast po-
tential (Fig. 1). Therefore, silk proteins can be a useful comple-
mentary strategy for physiological protection and functional 
recovery of the central and peripheral nervous system. Despite 
the long-established application of silk proteins as biomateri-
als and scaffolds, more in vivo studies are needed to verify the 
full neuroactive potentials of silk proteins. The fundamental 
and applied research will further elaborate the application of 
silk proteins in the neuroscience.
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