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Abstract 

Approximating the cumulative distribution function values of a standard normal 
distribution with the highest accuracies still remains a challenging task. For this purpose, 
the non-linear prediction formulas based on artificial neural networks are applicable to 
the non-linear nature of a standard normal distribution integral. In this study, a dataset 
consisting of almost real integral values of a standard normal distribution was prepared 
ranging from -5 to 10 by increments of 0.01. The dataset was used to train 16 artificial 
neural networks each of which was repeated 100 times to reach the best performance 
among them by considering the number of neurons, including 1, 2, 3, 5, 15, 25, 35, and 45. 
The test dataset was constructed ranging from -10 to 10 by increments of 0.001 without 
including the training dataset.  Two different types of ANN models were considered in 
which their transfer functions of the hidden layers were hyperbolic tangent and those of 
the output layers were either hyperbolic tangent or linear (purelin) .  Three evaluation 
metrics, the mean squared error (MSE), absolute error (AE), and relative error (RE) 
were used to compare the results of the proposed models and another 7 accurate 
literature approximation formulas. The results of the predicted points against their 
almost real values were illustrated and their measurement metric values were calculated 
and compared with those of the 7 literature formulas. The highest accuracies with 8 to 9 
digits of accuracy were achieved by the 2 proposed equations based on ANN models using 
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only 15 neurons with the measurement metrics MSE = 2.15E-17, AE = 1.03E-08,  
RE = 1.04E-08, point = 2.89, and MSE = 4.91E-18, AE = 4.51E-09, RE = 3.23E-06, point = 
-2.99 in the interval -10 to 10, respectively.  In conclusion, the 2 ANN-based equations 
with 15 neurons were superior in terms of properties, including optimization, less 
absolute error, and less computational costs. However, for simple calculations, the ANN-
based equation with 2 neurons using 2 hyperbolic tangent transfer functions at their 
hidden and output layers can also be used. 
 
Keywords: Artificial neural network, standard normal distribution, approximation, 
 cumulative distribution function, non-linear model 

Introduction 

In the realm of statistics in sciences such as 
engineering and natural, social, and computer 
sciences, the problem of approximating the 
values of normal distribution, one of the well-
known continuous probability distributions, 
has attracted statistics researchers worldwide 
(Bowling et al., 2009; Casella and Berger, 
2001). The applications of the normal 
distribution were vastly visited in approximating 
the quantities as representatives of the sum  
of many independent processes like 
measurement errors (Bowling et al., 2009; 
Lyon, 2014). The mathematical formula of 
the normal curve was firstly developed by De 
Moivre, in 1733, as a rationale for normal 
probability law (Johnson et al., 1994; Le Cam 
and Grace, 2000). However, Stigler stated 
that De Moivre only presented a rule for 
approximating binomial coefficients which 
never included the probability of the density 
function (Stigler, 1986). Normal distribution 
is mostly known as the Gaussian distribution 
to support the least squares which was 
developed by Carl Friedrich Gauss in 1809 
(Gauss, 2004). Additionally, this is known as 
Laplace's second law. Although Gauss 
suggested the normal distribution law first, 
Laplace presented the fundamental central 
limit theorem which emphasized the normal 
distribution in 1810 (Stigler, 1986). The 
normal distribution is mostly applied in 
hypothesis testing to check a null hypothesis. 
In other words, the null hypothesis test is  
satisfied when the overall view of plotted 
points almost forms a straight line. 

 

 
 
 
 
Generally, the calculation of different 

types of density functions of normal 
distributions can be performed in the form of 
the probability density function (PDF) of the 
normal distribution, PDF of the standard 
normal distribution, cumulative density 
function ( CDF)  of the normal distribution, 
and CDF of the standard normal distribution 
and their formulas are highlighted in this 
section. In the following formula, the PDF of 
normal distribution is calculated in which x is 
a random variable with mean  and variance 
2, and the PDF of the normal distribution is 
calculated as follows: 
 

f(x)=
1

√2πσ
e-12ቀx-μ

σ ቁ
2

, -∞<x<∞, μ∈R, σ>0    (1)  
 

For calculating the PDF of the standard 
normal distribution, let μ =  0, σ =  1, as 
follows: 
 

f(x)=
1

√2π
e-1

2x,      -∞<x<∞                              (2) 
 

Moreover, the CDF of the normal 
distribution is 

P(X<x)= න
1

√2πσ
e-12ቀy-μ

σ ቁ
2

dy
x

-∞

                         (3) 

 
and finally, by using Equations 2 and 3, the 
 

φ(x)= න
1

√2π
e-12(y)2

dy                                          (4)
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From a survey of the literature, there is 
no clear solution for computing the infinite 
numerical integral of the PDF (i.e., Equation 
2) which resulted in φ(x)  ( i.e. , Equation 4) . 
Additionally, the standard normal distribution 
table is commonly used for calculating these 
corresponding values.  In this case, if the x 
value is not present in the table, the 
probability between 2 x values should be 
calculated, which certainly does not result in 
that much of an accurate value with respect to 
the compared existing errors.  To overcome 
this shortcoming, several works were 
developed for approximating the cumulative 
normal distribution with less accurate results 
(Aludaat and Alodat, 2008; Bowling et al., 
2009; Yun, 2009). There are 2 known 
approaches for approximating the cumulative 
normal distribution. The first approach is 
based on numerical algorithms focusing on 
high precision, whereas the second approach 
uses ad-hoc approximations which do not 
increase the precision.  According to these 
specifications (i.e., speed and precision), the 
numerical algorithms include complex 
computations while ad-hoc approximations 
have low computational costs by using simple 
formulas. The classification of these formulas 
was discussed in detail by Waissi and Rossin 
(1996) and Bryc (2002) .  The formulas were 
divided into 4 types of approximations: series 
expansion, sigmoid approximation, orthogonal 
expansion, and ad-hoc approximation. In some 
cases, some exceptions can be supposed since 
some numerical algorithms are as simple as  
a pocket calculator, while some ad-hoc 
algorithms are so accurate but they require 
moderate calculations. Table 1 lists the studies 
carried out on improving the calculation of 
Equation 4 in terms of decreasing the absolute 
error. 

The aim of this study is to propose 
several non-linear models based on a multilayer 
perceptron (MLP)  neural network (with 
various numbers of neurons in their hidden 
layers)  for extracting and demonstrating 
improved equations to calculate Equation 4 

with the least absolute error.  To the best of 
the authors’ knowledge, this is the first study 
carried out for optimizing the calculation of 
Equation 4 using different MLP neural 
networks in terms of their numbers of 
neurons. 

Materials and Methods 

Dataset 
For constructing the input and output 

data for training the artificial neural network 
in order to propose a non-linear predictive 
model, a range of -5 < x < 10 with increasing 
steps of 0.01 was used. However, the Matlab 
R2013a programming environment was used 
to do the calculation of Equation 4 based on 
the above-mentioned data range. According to 
the references ( Hart, 1978; Greene, 1993; 
Andrews, 1997) , Equation 4 was calculated 
based on the following formulas: 
 
φ(x)≈ erfc( -x √2⁄ ) 2 ⁄  (5) 
 

 

(6)

 
 

For calculating the values for erfc and 
erf, the approximation methodology in Cody 
(1969)  was used since it had less errors and 
was more accurate in comparison to other 
approximation methods which are as below 
based on their dividing ranges: 

 

 

(7)
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Table 1. Literature review of most of the important equations considering their absolute errors 

Founder Equation Range Max. Absolute 
Error 

Laplace (Laplace, 
1812; Zelen and 
Severo, 1970) 

 

NA NA 

Laplace (Johnson 
and Kotz, 1970; 
Zelen and Severo, 
1970)  

6<x<∞ 22 significant 
digits of above 
equation 

McConnell 
(McConnell, 1990) 

 

0≥x<∞  7.5×10-8 

Revfeim (Revfeim, 
1990) 

 

-∞<x<∞ NA 

Page (Page, 1977) 

 

0≥x<∞ 1.4×10-4 

Waissi and Rossin 
(Waissi and Rossin, 
1996) 

 

0≥x<8 4.3×10-5 

Lin (Lin, 1990) 

 

 6.8×10-3 

Laplace (Laplace, 
1812) 

 

0≤ x<9 10-4 

Bryc (Bryc, 2002) 

 

0≥x<∞  7.1×10-4 

Bryc (Bryc, 2002) 

 

0≥x<∞  1.9 × 10-5 

Kerridge and Cook 
(Kerridge and Cook, 
1976)  

0≤x< ∞ NA 

Strecock; Moran 
(Moran, 1980; 
Strecock, 1968) 

 

NA 4.36×10-4 

Divgi (Divgi, 1979) 

 

0≤x≤7  0.009561, 
0.002097 

Hart (Hart, 1957) 

 

-∞<x<∞ 4.3×10-3 

Hart ((Hart, 1966) 

 

0≤x<∞ 5.4×10-5 

Bagby (Bagby, 
1995( 

 

0≤x<∞ 3.04×10-5 

Johnson and Kotz 
(Johnson and Kotz, 
1970) 

 
0≤x<∞ 0.0277 

Zelen and Severo 
(Zelen and Severo, 
1970) 

 
0≤x<∞ 0.0031 

Hamaker (Hamaker, 
1978)  

0≤x<∞ 0.1145 

Lin (Lin, 1989) 
 

0≤x<∞ 0.0329 

Norton (Norton, 
1989)  

0≤x<∞ 0.0658 
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Table 1. Literature review of most of the important equations considering their absolute errors (continued) 

Founder Equation Range Max .Absolute 
Error 

Shore (Shore, 2005) 

 

-∞<x<∞ 6.6072×10-7 

Aludaat and Alodat 
(Aludaat and Alodat, 
2008)  

0≤x<∞ 0.00197323 

Winitzki (Winitzki, 
2008) 

 

0≤x<4 0.0488 

Bowling (Bowling et 
al., 2009)  

0≤x<∞ 0.0095, 
0.00014 

Yun (Yun, 2009) 

 

0≤x≤a, j≥2, 

a = ට
π
2

 

8.9×10-4 

Yerukala et al. 
(Yerukala et al., 
2011) 

 
-3≤x≤3 0.0013 

Vazquez-Leal et 
al.(Vazquz-Leal et 
al., 2012)  

-∞<x<∞ 8.2933××10-5 

Soranzo and Epure 
(Soranzo and Epure, 
2012)  

0≤x<∞ 4××10-5 

Soranzo and Epure 
(Soranzo and Epure, 
2012)  

0≤x<∞ 1.18××10-5 

Choudhury 
(Choudhury, 2014) 

 

0<x<∞ 1.9296××10-4 

Olabiyi and  
Annamalai (Olabiyi 
and Annamalai, 
2012a, 2012b) 

 
0≤x<∞ 0.2599 

Soranzo and Epure () 
 

0≤x<∞ 0.00013 

Boiroju (Boiroju and 
Rao, 2014) 

 

-5≤x≤5 5.3××10-5 

 

The maximum relative errors for erf( x) 
and erfc(x) are between 6a10-19 and 3n10-20. 

Moreover, a test dataset was constructed 
in the range of -10 ≤ x ≤ 10 with increasing 
steps of 0.01and was used where 25%  of the 
data was unseen.  However, for robust 
evaluation of the equations, a second test 
dataset was also generated in the range of 
-10≤ x ≤ 10 with increasing steps of 0. 001 

where 100%  of the data was unseen by 
excluding the training dataset. 

Artificial Neural Network Model 

A multilayer perceptron (MLP) artificial 
neural network ( ANN)  model was used for 
approximating the cumulative standard 
normal distribution values ( Sokouti et al. , 
2011)  and it was implemented and run in 
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Matlab R2013a using the nntool toolbox. 
Considering the properties of an ANN model, 
a feed-forward backpropagation model with a 
total of 3 layers ( i. e. , input, hidden, and 
output layers) and the total number of neurons 
1, (1, 2, 3, 5, 15, 25, 35, 45) , for 1 of these 
layers was considered, respectively.  The 
training, adaptive learning, and performance 
functions were set to trainlm, learngdm, and 
mse. In this study, the ANN model was used 
to derive and propose a non-linear equation. 
Two approaches were carried out in which 
training and test datasets construct 75%  and 
25%  of the data in the range of -10 to 10. In 
the second approach, a 100%  unseen dataset 
was used to further evaluate the models’ 
performance, as mentioned in the data 
preparation section. Our approach was carried 
out in 2 groups. In the first group, the tansig 
and purelin functions were set for the hidden 
and output layers, respectively; and, in the 
second group, the transfer functions of both 
layers were set to tansig.  The formula which 
could be derived from the settings of the first 
group is as shown in Equation 8 and the one 
for the second group is Equation 9.  In both 
equations, n is the number of neurons used in 
the hidden layer.  For this purpose, it was 
essential for the unknown values for 
Equations 8 and 9 to be extracted using the 
MATLAB commands. 

 

φ(x)=
ቀW21×n × ൬tanhቀW1n×1×ቀ(x+10)

10
-1ቁ+b1n×1ቁ൰+ b2ቁ+1

2
     (8) 

 

φ(x)=
tanhቀW21×n×൬tanhቀW1n×1×ቀ(x+10)

10
-1ቁ+b1n×1ቁ൰+ b2ቁ+1

2
 (9) 

 
Both groups of ANN models were 

trained using 1, 2, 3, 5, 15, 25, 35, and 45 
neurons; moreover, the number of training 
processes carried out for each number of 
neurons was performed 100 times with the 
maximum number of 100000 iterations (i.e., 
the maximum number of epochs) in order to 
select the highest performance model. Then, 
the equation for the selected model would be 
extracted and used for several applications by 
having the generalizability property. 

In the next section, the approximation 
results based on the ANN models will be 
illustrated, compared, and discussed. 

Evaluation Process 

For the evaluation of the selected ANN-
based equations, 3 measurement criteria 
comprising mean square error ( MSE) , 
absolute error (AE) , and relative error ( RE) 
were denoted by Equations10, 11, and 12. 
 

MSE=
∑ ቀyprdi

-yobsi
ቁ

2
n
i=1

n
                      (10) 

 
where n is the number of values in the 
working range with the step of 0.01 
 
AE=MAX ቚyprdi

-

yobsi
ቚ
i=1

n
                                                    (11)   

 
RE= AE

ቚyobsi
ቚ
                                                (12)         

 

 
where i = the maximum point of the AE. 

 
Moreover, the approximation formulas 

of the literature studies with the least absolute 
errors were also considered for comparison 
purposes using the increment steps of 0.01 for 
their intervals.  The target approximation 
formulas were selected from 7 studies which 
were those from McConnell ( 1990) ; Shore 
(2005); Bowling et al. (2009); Yerukala et al. 
(2011); Soranzo and Epure (2012); Vazquez-
Leal et al. (2012); Boiroju and Rao (2014). 

Results and Discussion 

As a result, 8 equations with the least absolute 
errors were selected and derived for each 
group (i.e., a total of 16 formulas/models for 
both groups) according to their corresponding 
number of neurons. Then, the weight and bias 
values of the trained ANN models were 
retrieved in order to obtain the coefficients for 
Equations 8 and 9 for the first and second 
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(i) one-neuron ANN model 

 
 
(ii) two-neuron ANN model 

 
 
(iii) Three-neuron ANN model 

 
 
(iv) Five-neuron ANN model 

 
 
(v) Fifteen-neuron ANN model 

 
(vi) Twenty-five-neuron ANN model 

 

groups. Considering the first group, the values 
for the corresponding weight and bias for the 
ANN models by using the number of neurons 

at the hidden layer (i.e., 1, 2, 3, 5, 15, 25, 35, 
and 45)  are listed as below which can be 
easily substituted in Equation 8: 
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(vii) Thirty-five-neuron ANN model 
 

 
 
(viii) Forty-five-neuron ANN model 
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(viii) Forty-five-neuron ANN model 
 

 

Moreover, a comparison of the obtained 
ANN-based equations considering their 
numbers of hidden layer neurons and the 

exact function of Equations 6 and 7 is 
illustrated in Figure 1. 

 

 
 
Figure 1. Comparison of Equation 8 with (a) 1 neuron, (b) 2 neurons, (c) 3 neurons, (d) 5 neurons,  
 (e) 15 neurons, (f) 25 neurons, (g) 35 neurons, (h) 45 neurons and Equations 6 and 7 
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(v) fifteen-neuron ANN model 
 

Considering the second group, the 
values for the corresponding weight and bias 
for the ANN models by using the number of 

neurons at the hidden layer (i.e., 1, 2, 3, 5, 15, 
25, 35, and 45) are listed as below which can 
also be easily substituted in Equation 9: 
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(vi) twenty five-neuron ANN model 
 

 
 
 
(vii) thirty five-neuron ANN model 
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 (viii) forty five-neuron ANN model 
 

 

Moreover, a comparison of the obtained 
ANN-based equations considering their 
numbers of hidden layer neurons and the 

exact function of Equations 6 and 7 is 
illustrated in Figure 2. 

 

 
Figure 2. Comparison of Equation 9 with ( a)  1 neuron, ( b)  2 neurons, ( c)  3 neurons,  
 (d)  5 neurons, ( e)  15 neurons, ( f)  25 neurons, ( g)  35 neurons, ( h)  45 neurons and  
 Equations 6 and 7 
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Next, the results obtained from the 
proposed models/formulas and other 
outstanding studies in terms of three 
evaluation metrics including Mean Square 
Error ( MSE) , Absolute Error ( AE) , and 
Relative Error ( RE)  will be compared and 
discussed.  These are summed up in Table 2 
which consists of the results of approximation 
formulas of studies presented by Bowling 
(Bowling et al. , 2009) , Yerukala ( Yerukala  
et al. , 2011) , Vazquez ( Leal et al. , 2012) , 
Kumar ( Boiroju and Rao, 2014) , Soranzo 
( Soranzo and Epure 2012) , Shore ( Shore, 
2005) , and McConnell ( McConnell, 1990) . 
Moreover, the results of the proposed 
formulas in two groups ( i. e. , based on 
equations 8 and 9) using 1, 2, 3 ,5, 15, 25, 35, 
and 45 neurons in the hidden layer are 
included.  In Table 2, Bowling presented an 
approximation expression with MSE =1.57E-
05, AE =  9. 49E-03 and RE =  1. 33E-02 at 
point 0. 57 which works in the interval 
0 ≤ x ≤ 10.  A better approximation model in 
comparison to the Bowling's (Bowling et al. , 

2009)  is the one based on equation 9 with  
one neuron in the interval -∞ ≤ x ≤ +∞.  
The performance of this model achieves  
MSE = 1. 55E-05, AE = 9. 46E-03 and  
RE =  9.66E-03 at point 2.04 in the interval 
0 ≤ x ≤ 10 and MSE = 1.57E-05, AE = 9.52E-
03 and RE =  4.60E-01 at point -2.04 in the 
interval -10≤ x ≤10.  Another approximation 
model is based on equation 8 with one neuron 
in the interval -∞≤ x ≤+∞.  This formula's 
performance achieves MSE =  1. 38E-05,  
AE =  8.84E-03 and RE =  9.04E-03 at point 
0. 57 in the interval 0≤ x ≤10 and MSE 
=1.39E-05, AE = 8.95E-03 and RE = 3.15E-
02 at point -0. 57 in the interval -10≤ x ≤10. 
The next model which is proposed based on 
equation 8 with two neurons in the interval 
-∞ ≤ x ≤ +∞.  The measurement metrics for 
this formula are MSE =  1. 81E-06, AE = 
2.92E-03 and RE =3.05E-03 at point 1.73 in 
the interval -10 ≤ x ≤ 10.  The next one is 
Yerukala's approach which is an ANN based 
model with three neurons at its hidden layer 
in the interval -3 ≤ x ≤ 3. For keeping up with 

Table 2.  Comparisons of the proposed ANN models based on equations 8 and 9, and other seven 
 outstanding formulas in terms of three measurement metrics including MSE, AE, RE. 
 

Methods MSE AE RE 
Max. AE 

observed at 
Point 

Range 

Bowling (Bowling et al., 2009) 1.57E-05 9.49E-03 1.33E-02 0.57 0 < x < 10 
Equation 8 1-neuron 1.39E-05 8.95E-03 3.15E-02 -0.57 -10 < x < 10 
Equation 9 1-neuron 1.57E-05 9.52E-03 4.60E-01 -2.04 -10 < x < 10 
Equation 8 2-neuron 1.81E-06 2.92E-03 3.05E-03 1.73 -10 < x < 10 
Yerukala (3-neuron) (Yerukala et al., 2011) 8.68E-07 1.25E-03 3.02E-01 -2.64 -3 < x < 3 
Equation 8 3-neuron 3.07E-09 1.05E-04 3.13E-04 -.43 -10 < x < 10 
Vazquez (Leal et al., 2012) 5.25E-10 8.29E-05 5.47E-04 -1.03 -10 < x < 10 
Kumar(2-neuron) (Boiroju and Rao, 2014) 2.89E-10 5.30E-05 2.64E-04 -0.84 -5 < x < 5 
Soranzo(Soranzo and Epure 2012) 2.58E-11 1.13E-05 1.30E-05 1.13 0 < x < 10 
Equation 8 5-neuron 1.27E-11 8.28E-06 7.93E-04 -2.31 -10 < x < 10 
Equation 9 2-neuron 7.23E-12 6.97E-06 1.90E-05 -0.34 -10 < x < 10 
Equation 9 3-neuron 3.92E-12 5.89E-06 5.89E-06 3.51 -10 < x < 10 
Shore (Shore, 2005) 4.74E-14 6.61E-07 8.77E-03 -3.79 -10 < x < 10 
Equation 9 5-neuron 5.70E-14 6.02E-07 3.91E-06 -1.02 -10 < x < 10 
McConnell (McConnell, 1990) 9.54E-16 7.47E-08 9.77E-08 0.72 0 < x < 10 
Equation 8 45-neuron 2.99E-16 4.50E-08 4.50E-08 2.86 -10 < x < 10 
Equation 8 15-neuron 2.15E-17 1.03E-08 1.04E-08 2.89 -10 < x < 10 
Equation 8 25-neuron 1.17E-17 9.57E-09 7.59E-05 -3.66 -10 < x < 10 
Equation 8 35-neuron 1.05E-17 7.48E-09 7.48E-09 5.26 -10 < x < 10 
Equation 9 15-neuron 4.91E-18 4.51E-09 3.23E-06 -2.99 -10 < x < 10 
Equation 9 25-neuron 1.00E-18 2.57E-09 4.18E-09 0.29 -10 < x < 10 
Equation 9 35-neuron 1.34E-18 3.10E-09 6.67E-08 -1.68 -10 < x < 10 
Equation 9 45-neuron 3.70E-19 1.91E-09 2.25E-05 -3.76 -10 < x < 10 
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this model, our proposed ANN model with 
three neurons based on equation 8 for the 
interval -∞ ≤ x ≤ +∞ has achieved MSE 
=3.07E-09, AE = 1.05E-04 and RE = 3.13E-
04 at point -0.43 in the interval -10 ≤ x ≤ 10. 
In Figure 3, the error plots of Bowling, 
equation 9 with one neuron, equation 8 with 
one neuron, equation 8 with two neurons, 
Yerukala ( Yerukala et al. , 2011) , and 
equation 8 with three neurons are illustrated. 
Surely, not all of the methods comply with 
the range of -10≤ x ≤10. 

After the abovementioned methods, 
Vazquez's formula ( Leal et al. , 2012) 
achieves better results than our three neuron 
ANN model based on tanh and purelin 
transfer functions which works in the interval  
-∞ ≤ x ≤ +∞ and the results are extracted for 
the interval -10 ≤ x ≤ 10.  The next better 
ANN model with tanh and standard logistic 
transfer functions at hidden and output layers 
which used two neurons in its hidden layer  
was proposed by Kumar ( Boiroju and Rao, 
2014) in the interval  -5 ≤ x ≤ +5. After that, 

 
 
Figure 3.  Error comparisons of Bowling, Equation 9 with 1 neuron, Equation 8 with 1 
 neuron, Equation 8 with 2 neurons, Yerukala, and Equation 8 with 3 neurons 
 
 

 
 
Figure 4. Error comparisons of Equation 8 with 3 neurons, Vazquez-Leal, Boiroju, Soranzo, 
 Equation 8 with 5 neurons, Equation 9 with 2 neurons, and Equation 8 with 3 
 neurons 
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the next approximation equation presented by 
Soranzo ( Soranzo and Epure 2012)  in the 
interval  -∞ ≤ x ≤ +∞ was evaluated in the 
interval -10 ≤ x ≤ 10. Our next proposed ANN 
models based on equation 8 with five, and 
based on equation 9 with two and three 
neurons stand better than Soranzo's which 
work in the interval-∞ ≤ x ≤ +∞ and are 
evaluated in the interval -10 ≤ x ≤ 10. 

In Figure 4, the error plots of ANN 
models based on equation 8 with three and 
five neurons and based on equation 9 with 
two and three neurons, Vazquez (Leal et al. , 
2012) , Kumar ( Boiroju and Rao, 2014) , 
Soranzo ( Soranzo and Epure 2012)  are 
illustrated. 

Three other formulas which stand next 
are related to Shore's ( Shore, 2005) , our 
proposed ANN model based on equation 9 
with five neurons, and McConnell's 
(McConnell, 1990) .  However, the ranges of 

them are -∞ ≤ x ≤ +∞, -∞ ≤ x ≤ +∞, and 
0 ≤ x ≤ +∞ , respectively and the evaluation 
intervals for them are as -10 ≤ x ≤ 10, 
-10 ≤ x ≤ 10, 0 ≤ x ≤ 10.  After the 
McConnell’ s, the ANN model based on 
Equation 8 with 45 neurons stands first by 
using the interval -10 ≤ x ≤ 10. In Figure 5, the 
error plots related to these four methods are 
illustrated in the interval -10 ≤ x ≤ 10, 
however, McConnell's only supports 
0 ≤ x ≤ 10.  

Up to this point, our proposed ANN 
model based on Equation 8 with 45 neurons 
reaches the best performance in comparison 
to other existing formulas.  From now on, 
other ANN models which are different in 
terms of their neurons and transfer functions 
will be evaluated in order to propose the 
optimum ANN model for predicting the 
equation 4. As it can be deduced from Table 2 
and Figure 6, the ANN models based on 

         
 

Figure 5. Error Comparisons of Shore, 
 Equation 9 with 5 neurons, 
 McConnell, and Equation 8 with 45 
 neurons in intervals -10 ≤ x ≤ 10 

Figure 6. Error comparisons of Equation 8 
 with 45 neurons, Equation 8 with 
 15 neurons, Equation 8 with 25 
 neurons, and Equation 8 with 35 
 neurons in intervals -10 ≤ x ≤ 10 
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equation 8 with 45, 15, 25, and 35 neurons are 
ranked orderly considering their absolute 
error values.  So, if the computational costs 
are so important for us, the ANN model based 
on Equation 8 with 15 neurons will be more 
than enough for the purpose of both 
optimization and having less absolute error 
values (i.e., MSE = 2.15E-17, AE = 1.03E-08 
and RE =  1. 04E-08 at point 2. 89 in the 
interval - 10 ≤ x ≤ 10).  On the other hand, 
from Table 2 and Figure 7, it can found out 
that the ANN models based on Equation 9 
with 15, 25, 35, and 45 neurons are ranked 
orderly considering their absolute error 
values.  Again, taking in to account that less 
number of computational commands, 
optimization and less MSE and AE are 
important, the ANN model based on Equation 
8 with 15 neurons can selected which has 
achieved MSE =  4.91E-18, AE =  4.51E-09 
and RE =  3. 23E-06 at point -2. 99 in the 
interval -10 ≤ x ≤ 10. 

To further evaluate the extracted 
formulas based on Equations 8 and 9 from 
ANN model, the results for a 100%  unseen 
dataset with increment step of 0. 001 are 
demonstrated in Table 3. The outcomes of the 
second unseen test dataset are illustrative of 
the fact that the measurement metrics values 
for these equations are almost the same as 

their corresponding equations from Table 2. 
Hence, the generalizability of the equations is 
satisfied.  Moreover, during the experiment, 
additional hidden layers did not improve the 
performance of the equations; however, using 
more hidden layers will increase the 
computational costs as well. 

Last but not the least, when an equation 
for a best performance ANN model is 
extracted, there is no need for training the 
ANN model for several times again, and 
hence the equation can be used for future 
researches and its reproducibility results will 
be guaranteed. 

Conclusions 

In this study, we have proposed 16 ANN 
models based on derived equations from these 
non-linear black boxes for predicting the 
values of the cumulative distribution function 
of standard normal distribution.  The ( tanh, 
tanh) and (tanh, purelin) transfer functions are 
used in their hidden layers and output layers, 
respectively. The proposed models, especially 
with 15 neurons on both types of ANN 
models, showed superior performance in 
comparison to the literature approximation 
formulas whether they are based on ANN 

 
 
Figure 7. Error comparisons of Equation 9 with 15 neurons, Equation 9 with 25 neurons, 
 Equation 9 with 35 neurons, and Equation 9 with 45 neurons in intervals -10 ≤ x ≤ 10 
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models or simple formulas in the interval  
-10 < x <10. Moreover, this is the first study 
to include all types of formulas which include 
different types of mathematical equations. 
Additionally, by considering the ANN models 
with 15 neurons, the optimization, the most 
accuracy, and less absolute errors of about 8 
to 9 decimal points of accuracy are the 
properties that will make ANN-based 
formulas to be more accurate and close to the 
real computational values.  However, if the  
6 decimal points of accuracy is still of interest 
to researchers, our ANN model based on the 
tanh and tanh transfer functions with only  
2 neurons can be used even by simple 
calculators.  The outcomes of this study 
represented as approximation equations can 
be beneficial for being embedded in statistics 
software environments such as SPSS, 
STATA, and R, and comprehensive Meta-
analysis, OpenMeta[ Analyst] , and Meta-
mums tools. 
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