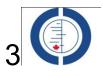
Heterogeneity

Tabriz University of Medical Sciences Standard Workshop on Systematic Reviews _ October 2012 Dr. Shayesteh Jahanfar, University of British Columbia

1

Outline

- what is heterogeneity?
- causes of heterogeneity
- identifying heterogeneity
- dealing with heterogeneity
- fixed and random effects meta-analysis



What is heterogeneity?

Heterogeneity is variation between the results of a set of studies

Causes of heterogeneity: clinical

Differences between studies with respect to:

- participants
 - conditions under investigation, eligibility criteria for trials, geographical variation
- interventions
 - e.g. type of drug, intensity, dose, duration, mode of administration, experience of practitioners, nature of control (placebo, none, standard care)
- outcomes
 - e.g. type, follow-up duration, ways of measuring outcomes, definition of an event

Causes of heterogeneity: methodological

Differences between studies with respect to:

- design
 - e.g. randomised vs non-randomised, parallel group vs crossover vs cluster randomised, length

conduct

 e.g. allocation concealment, blinding, approach to analysis, imputation methods for missing data

Statistical heterogeneity

 excessive variation in the results of studies above that expected by chance

Identifying heterogeneity

- 1. graphically the eyeball test
- 2. numerically the I² test

Forest plot A Forest plot B 0.01 0.1 10 100 0.01 10 100 0.1 Favours treatment Favours control Favours control Favours treatment

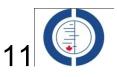
Quantifying heterogeneity

- I² describes the proportion of total variation across studies that is due to heterogeneity rather than chance
- based on Cochran Q test and its degrees of freedom
- $I^2 = (Q df) \times 100\%$ (df = the number of studies minus 1) Q



Quantifying heterogeneity

- low (and negative) values of I² indicate no, or little, heterogeneity
- larger values of I² show increasing heterogeneity
- roughly, values of of 25%, 50% and 75% correspond to low, moderate and high levels of heterogeneity (Higgins et al 2003, BMJ)



Caffeine for daytime 'sluggishness'. (version with data) Review: 01 Caffeinated Coffee versus Decafeinated Coffee Comparison: Outcome:

09 Asleep at the end of the lecture

Study	Caffeinated	Decaffeinated	RR (fixed)	Weight	RR (fixed)
or sub-category	n/N	n/N	95% CI	%	95% Cl
Blue Ribbon 1997	2/10	3/10		4.47	0.67 [0.14, 3.17]
Lavazza 1998	0/30	8/28		13.10	0.06 [0.00, 0.91]
Moccona 1998	5/10	15/17		16.57	0.57 [0.30, 1.08]
Nescafe 1998	13/68	10/59		15.97	1.13 [0.53, 2.38]
Int Roast 1999	13/50	15/50		22.37	0.87 [0.46, 1.63]
Harris Hudsons 2002	12/60	16/44	+	27.53	0.55 [0.29, 1.04]
Total (95% CI)	228	208		100.00	0.66 [0.48, 0.90]
Total events: 45 (Caffeinated)	, 67 (Decaffeinated)				
Test for heterogeneity: Chi ² = 6	6.25, df = 5 (P = 0.28), l ² = 2(D.1%			
Test for overall effect: Z = 2.5					
		0.0		0 1000	
			Favours caffeine Favours deca	afe	



Dealing with heterogeneity

Options available to you:

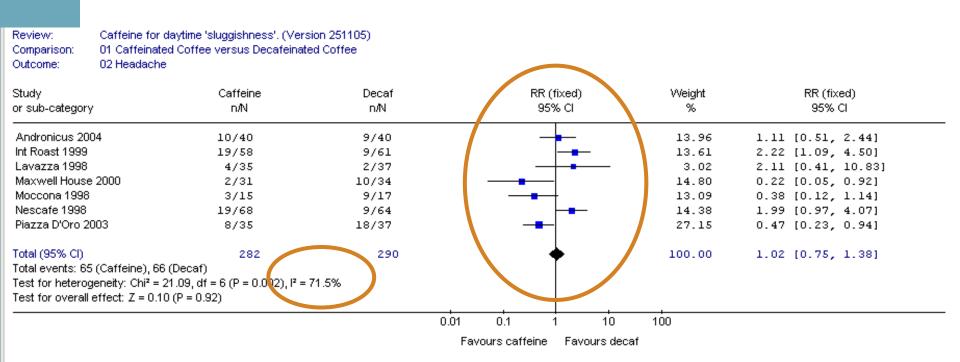
- 1. check the data
- 2. don't pool studies
- 3. ignore heterogeneity: use fixed effect model
- 4. investigate reasons for heterogeneity
- 5. incorporate heterogeneity: use random effects model

Option 1: Check the data

- Check extracted data
- Check analyses of individual studies

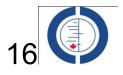
Option 2: Don't pool studies

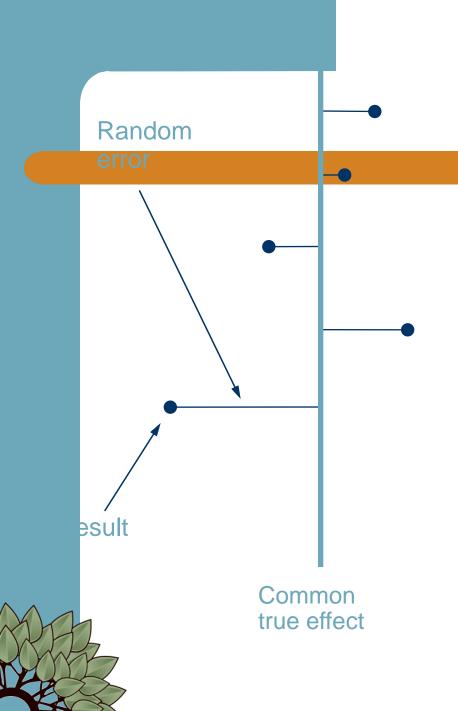
Review:	Caffeine for daytime 'sluggishness'. (Version 251105)
Comparison:	01 Caffeinated Coffee versus Decafeinated Coffee
Outcome:	02 Headache


Study or sub-category	Caffeine n/N	Decaf n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl
Andronicus 2004	10/40	9/40		16.24	1.11 [0.51, 2.44]
Int Roast 1999	19/58	9/61	_ 	17.02	2.22 [1.09, 4.50]
Lavazza 1998	4/35	2/37		9.08	2.11 [0.41, 10.83]
Maxwell House 2000	2/31	10/34	_	10.42	0.22 [0.05, 0.92]
Moccona 1998	3/15	9/17		13.16	0.38 [0.12, 1.14]
Nescafe 1998	19/68	9/64	—	16.93	1.99 [0.97, 4.07]
Piazza D'Oro 2003	8/35	18/37		17.16	0.47 [0.23, 0.94]

Favours caffeine Favours decaf

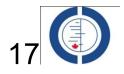
Option 3: Ignore heterogeneity



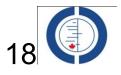

Fixed effect model

Philosophy behind model:

- there is one real value for the treatment effect
- all trials are estimating this common treatment effect

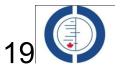


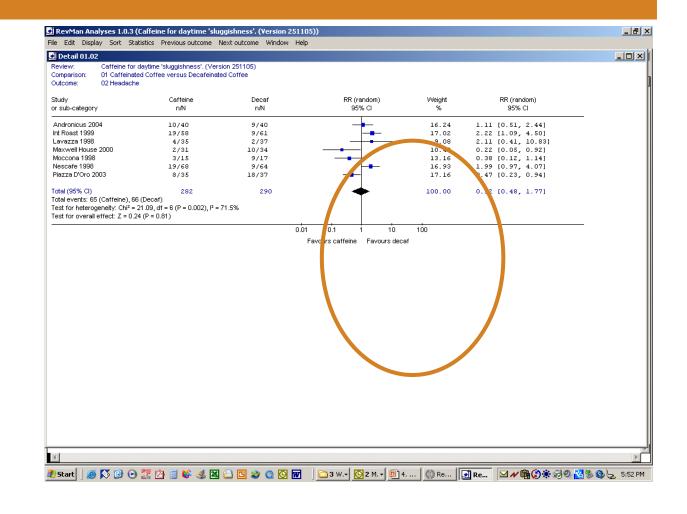
Fixed effect model

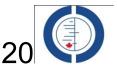

- assumes that all studies are evaluating the same treatment effect
- *i.e.* if they were all infinitely large they'd produce an identical result

Option 4: Investigating heterogeneity

- as an objective of your review (should be pre-specified in your protocol)
- to determine causes of unexpected statistical heterogeneity
 - note. post hoc investigations should be reported as such and are hypothesis-generating at best

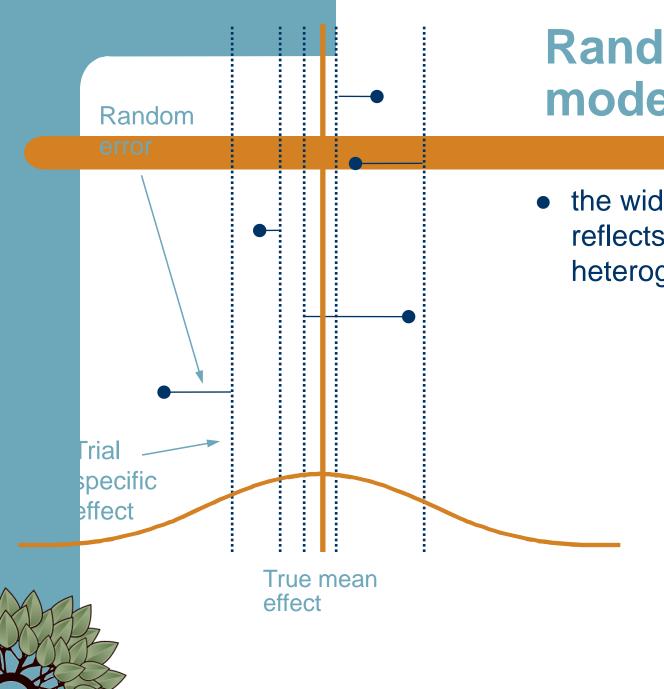



Investigating heterogeneity: tools


subgroup analysis

- get answers to secondary questions concerning subsets of participants or interventions
- can yield spurious findings if not used carefully
- meta-regression
 - examine relationship between treatment effect and a particular characteristic of the study (not patients)
 - not available in RevMan
- individual patient data (IPD) meta-analysis
 - investigate patient-level characteristics
 - time consuming and expensive

Option 5: Incorporate heterogeneity

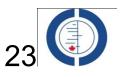


Random effects model

- if heterogeneity cannot be explained by characteristics of the studies, it may be incorporated into the meta-analysis using the random-effects model
- the true treatment effects underlying the studies are allowed to differ and are assumed to be distributed around a central (mean) value
- weights are adjusted to account for both within-study and between-study variation

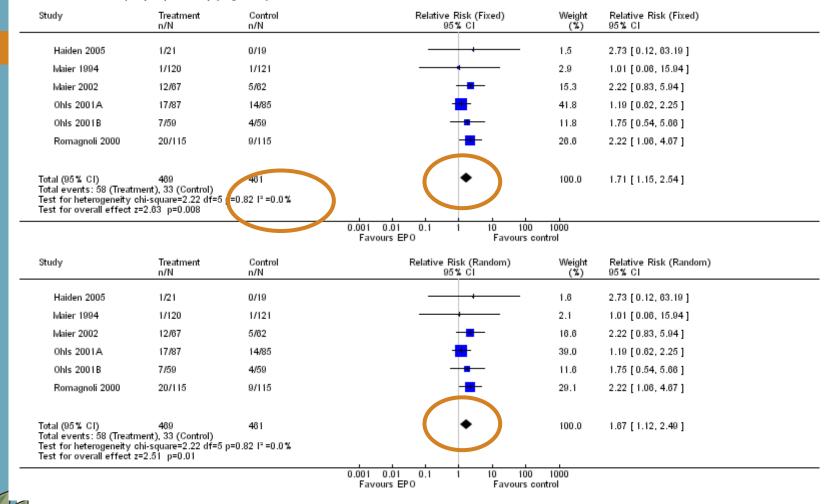
Random effects model

 the width of the bell shape reflects the amount of heterogeneity



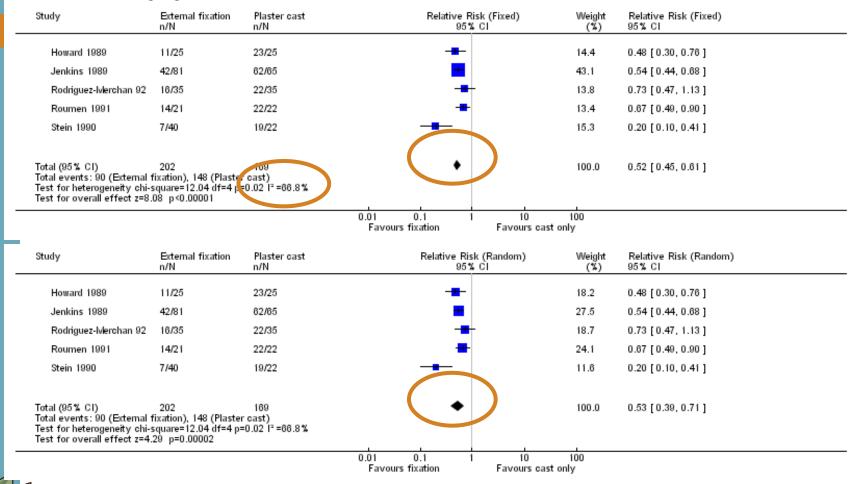
Interpreting random effects meta-analyses

Random effects meta-analyses are...

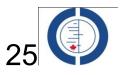

- identical to fixed effect analyses when there is no clear heterogeneity
- **similar** to fixed effect meta-analyses but *with wider confidence intervals* when there is heterogeneity
- different from fixed effect meta-analyses when there is publication bias (or funnel plot asymmetry)
 - random effects analyses give relatively more weight to smaller studies

Fixed versus random effects

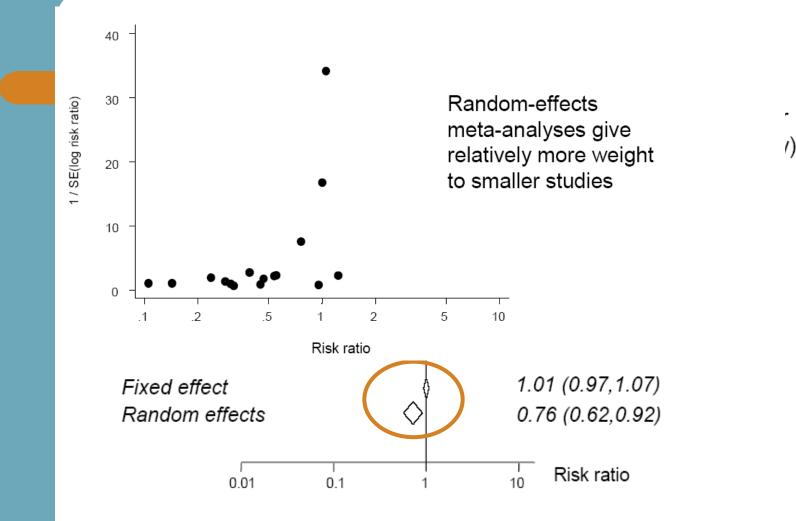
Review: Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants Comparison: 01 Brythropoietin vs. placebo or no treatment Outcome: 09 Retinopathy of prematurity (stage >/= 3)



almost identical



Fixed versus random effects


Review: Surgical interventions for treating distal radial fractures in adults Comparison: 01 External fixation versus plaster cast Outcome: 03 Anatomical grading: not excellent

similar, but wider Cls

Fixed versus random effects

Very different results

source: with thanks to Julian Higgins²⁶

Take home messages

- heterogeneity should be assessed and addressed
- statistical heterogeneity occurs when studies are not all evaluating the same treatment effect
- looking at overlap of confidence intervals on forest plot is a good way to identify statistical heterogeneity
- I² can quantify the degree of inconsistency across studies
- there are several options for dealing with heterogeneity
- methods to investigate heterogeneity should be pre-specified in the protocol
- random effects meta-analyses are useful for incorporating unexplained variability into a summary
 - but random effects meta-analyses are not a panacea

