Clinical-Bladder cancer

Catalog of prognostic tissue-based biomarkers in patients treated with neoadjuvant systemic therapy for urothelial carcinoma of the bladder: a systematic review

Ekaterina Laukhtina, Benjamin Pradere, Keiichiro Mori, Victor M. Schuettfort, Fahad Quhal, Hadi Mostaefa, Reza Sari Motlangu, Satoshi Katayama, Nico C. Grossmann, Marco Moschini, Dmitry Enikeev, Shahrokh F. Shariat, Prof.

*Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
bInstitute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
dDepartment of Urology, The Jikei University School of Medicine, Tokyo, Japan
eDepartment of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
fDepartment of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
hDepartment of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
iDepartment of Urology, University Hospital of Tours, Tours, France
jDepartment of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
kDepartment of Urology, University Hospital Zurich, Zurich, Switzerland
lDepartment of Urology, Luzerner Kantonsspital, Lucerne, Switzerland
mDepartment of Urology, Weill Cornell Medical College, New York, USA
nDepartment of Urology, University of Texas Southwestern, Dallas, Texas, USA
oDepartment of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
pDepartment of Urology, Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
qDivision of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan
rEuropean Association of Urology Research Foundation, Arnhem, Netherlands

Received 10 November 2020; received in revised form 14 December 2020; accepted 19 December 2020

Abstract

PURPOSE: The present systematic review aimed to identify prognostic values of tissue-based biomarkers in patients treated with neoadjuvant systemic therapy (NAST), including chemotherapy (NAC) and checkpoint inhibitors (NAI) for urothelial carcinoma of the bladder (UCB).

MATERIAL AND METHODS: The PubMed, Web of Science, and Scopus databases were searched in August 2020 according to the PRISMA statement. Studies were deemed eligible if they compared oncologic or pathologic outcomes in patients treated with NAST for UCB with and without detected pretreatment tissue-based biomarkers.

RESULTS: Overall, 44 studies met our eligibility criteria. Twenty-three studies used immunohistochemistry (IHC), 19 – gene expression analysis, three - quantitative polymerase chain reaction (QT PCR), and two – next-generation sequencing (NGS). According to the currently available literature, predictive IHC-assessed biomarkers, such as receptor tyrosine kinases and DNA repair pathway alterations, do not seem to convincingly improve our prediction of pathologic response and oncologic outcomes after NAC. Luminal and basal tumor subtypes based on gene expression analysis showed better NAC response, while claudin-low and luminal-infiltrated tumor subtypes did not. In terms of NAI, PD-L1 seems to maintain value as a predictive biomarker, while the utility of both tumor mutational burden and molecular subtypes remains controversial. Specific genomic alterations in DNA repair genes have been shown to provide significant predictive value.
1. Introduction

Urothelial carcinoma of the bladder (UCB) is one of the most frequently diagnosed and harmful cancers worldwide [1]. Neoadjuvant cisplatin based combination chemotherapy (NAC) prior to radical cystectomy is the preferred first treatment in cisplatin eligible patients with muscle-invasive UCB [2, 3]. However, multiple reasons impeded the widespread uptake of NAC such as the fear of unnecessary chemotoxicity, its perceived relatively modest survival benefit, and/or the fear of a delay to radical treatment [4, 5]. Moreover, UCB is a highly heterogeneous disease with varied response rates when therapies are given in unselected patient populations. Identification of the patients who are unlikely to respond to NAC could allow better selection of patients to immediate radical cystectomy or allocation of different systemic therapies such as checkpoint inhibitors (CPI).

Modern medical decisions can be tailored to the individual patient based on predicted response or risk of disease. Understanding the molecular basis of disease has ushered in a new age of precision medicine. Molecular markers are promising tools that may give insight into which UCB patients will or will not benefit from neoadjuvant systemic therapy (NAST) and which have the potential to overcome the limitations of conventionally used prognostic risk factors. In addition, a biomarker-based strategy to identify patients who should undergo NAC is more cost-effective compared to the current unselected use of NAC or radical cystectomy alone [6]. Numerous publications provided data on potential molecular markers associated with NAC response in UCB patients; however, none is yet validated or widely used in the clinical practice [7−9].

In this systematic review we aimed to summarize the available evidence as well as to determine whether pretreatment tissue-based biomarkers may help predict oncologic and pathologic outcomes in patients treated with NAST for UCB. This review is a benchmark for future developments.

2. Evidence acquisition

2.1. Literature search

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement [10]. This study’s protocol was registered a priori on the International Prospective Register of Systematic Reviews (PROSPERO; Registration ID CRD42020208417).

The PubMed, Web of Science, and Scopus databases were searched in August 2020 to identify studies reporting on the prognostic value of tissue-based biomarkers in patients treated with NAST for UCB. A comprehensive systematic literature search was independently performed by two authors. The keywords used in our search strategy included: (NAC OR neoadjuvant) AND (bladder OR urothelial) AND (cancer OR tumor OR malignancy OR carcinoma) AND (biomarker). In addition, we manually searched for potentially relevant trials from the references of selected studies. The primary outcome of interest was both oncologic and pathologic outcomes in patients treated with NAST for UCB.

After removing duplicates, two independent reviewers screened the titles and abstracts. Any citation which either reviewer thought should be included or unclear for inclusion was identified for full text screening. Subsequently, reviewers reviewed full texts of eligible articles for final inclusion and data extraction. In cases of disagreement, the authors consulted with the co-authors, and final decisions were reached by consensus.

2.2. Inclusion and exclusion criteria

We included all non-randomized observational studies that reported on the prognostic value of tissue-based biomarkers in UCB.

The PICO in this study was the following: patients treated for UCB with detected pretreatment tissue-based biomarkers. Intervention included NAST for UCB. Control group included those patients without pretreatment tissue-based biomarkers. The outcome included any measure of association between oncologic and pathologic outcomes and the candidate biomarker, the diagnostic performance of the biomarker.

We excluded reviews, letters, editorials, animal studies, study protocols, case reports, meeting abstracts, replies from authors, brief correspondence, and articles not published in English. Furthermore, we excluded the studies in patient treated with NAC. QT PCR quantification of specific genes selected through microarray analysis seems to classify cases regarding their NAC response.

CONCLUSION: We believe that the present systematic review may offer a robust framework that will enable the testing and validation of predictive biomarkers in future prospective clinical trials. NGS has expanded the discovery of molecular markers that are reflective of the mechanisms of the NAST response. © 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
that did not provide data regarding the oncologic or pathologic outcomes. References of all papers included were scanned for additional studies of interest.

2.3. Data extraction

Data extracted from each study were independently extracted by two independent reviewers. Extracted data included the following: first author’s name, publication year, study design, demographics characteristics including age range, sample size, pathological T stage, follow-up duration, NAC regime, definition of response, type of biomarkers, methods of biomarkers detection, % of patients with high expression, and Main results. Subsequently, the hazard ratios (HR) and 95% confidence intervals (CI) of tissue-based biomarkers associated with each outcome were retrieved.

2.4. Evidence synthesis

The literature search identified 624 unique references. Among them, 233 records were removed due to duplication, and 261 articles were excluded due to unrelated outcomes during the screening process (Figure 1). Of the 130 full-text articles assessed for eligibility, 86 were excluded based on the selection criteria.

Overall, 44 studies were finally included in the present systematic review. Characteristics of the studies are shown in Table 1. Fifteen of the included studies had a prospective study design, and twenty-nine were retrospective.

3. Immunohistochemistry (IHC)

Twenty-three studies provided data on the pretreatment biomarkers detected at IHC.

Figure 1. Flow diagram of the study selection procedure for the systematic review.
Table 1
Characteristics of included studies reporting biomarker predictive models of response to neoadjuvant systemic therapy in patients with bladder cancer.

<table>
<thead>
<tr>
<th>Author, publication year</th>
<th>Study design</th>
<th>Number of NAC patients</th>
<th>Age, years (median, range)</th>
<th>Stage</th>
<th>Follow-up, median (range)</th>
<th>NAC</th>
<th>Definition of response</th>
<th>Type of markers evaluated (cut off values)</th>
<th>Methods</th>
<th>% of high expression (%)</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandini, 2020 [27]</td>
<td>P</td>
<td>112</td>
<td>66 (IQR 61-73)</td>
<td>T2-T4, N0</td>
<td>NR</td>
<td>Pembrolizumab</td>
<td>pT0N0</td>
<td>TMB (11 mm/Mb)</td>
<td>CGP</td>
<td>TMB (12.5)</td>
<td>TMB was not associated with NAC response on multivariable analysis (OR 1.04; 0.98-1.10, p=0.09).</td>
</tr>
<tr>
<td>Baras, 2015 [42]</td>
<td>R</td>
<td>37</td>
<td>63 (44−83)</td>
<td>T2-T4</td>
<td>NR</td>
<td>GC</td>
<td><ypT2</td>
<td>miRNAs (10%),</td>
<td>BIC</td>
<td>NR</td>
<td>The combination of GDPD1 and PREDI predicted NAC response (p=0.001).</td>
</tr>
<tr>
<td>Baras, 2016 [43]</td>
<td>R</td>
<td>41</td>
<td>64 (48-82)</td>
<td>T2-T4, N0N+</td>
<td>NR</td>
<td>NR</td>
<td><ypT2</td>
<td>Molecular subtype: basal-like, luminal-like and p53-like expression values</td>
<td>BIC</td>
<td>NR</td>
<td>The ratio of CD8/PD-1 TIL-densities was strongly associated with response (p=0.0005).</td>
</tr>
<tr>
<td>Choi, 2014 [43]</td>
<td>R</td>
<td>37</td>
<td>63 (44−83)</td>
<td>T2-T4, N0, M0+</td>
<td>NR</td>
<td>Platinum-based</td>
<td><pT1</td>
<td>Whole genome mRNA expression profiling</td>
<td>BIC</td>
<td>NR</td>
<td>Response was 0% in p53-like, 40% - basal-like and 67% - luminal-like subtypes (p=0.018).</td>
</tr>
<tr>
<td>Cheunzui, 2016 [43]</td>
<td>R</td>
<td>31</td>
<td>64 (45-82)</td>
<td>T2-T4, N0-1, M0</td>
<td>2 years</td>
<td>dMVAC</td>
<td><pT1</td>
<td>Gene expression analysis</td>
<td>FGFRI+ (16%)</td>
<td>The luminal-papillary IntraFCa cluster (LC3) tumors had favorable prognosis and had enhanced FGFRI, SHH, and wild-type p53 pathway activity.</td>
<td></td>
</tr>
<tr>
<td>de Jong, 2019 [44]</td>
<td>R</td>
<td>223</td>
<td>62 (56–71)</td>
<td>T2−N3, M0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Molecular subtype: luminal-like, basal, claudin-low</td>
<td>Transcriptome-wide gene expression profiles</td>
<td>NR</td>
<td>NSSS and OS were worse among patients with claudin-low tumors (p=0.01 and p=0.06, respectively).</td>
</tr>
<tr>
<td>Efstathiou, 2019 [24]</td>
<td>R</td>
<td>57</td>
<td>64 (41-80)</td>
<td>T2-T4, N0+, M0+</td>
<td>45 mo (14−190)</td>
<td>GC, CMV</td>
<td>pT5-1</td>
<td>BRCA1 (>=26.77)</td>
<td>RT-PCR</td>
<td>BRCA1 (32)</td>
<td>60% of patients with low/intermediate BRCA1 levels attained PR vs 22% of those with high levels (p=0.01).</td>
</tr>
<tr>
<td>Garcia del Muro, 2004 [45]</td>
<td>R</td>
<td>82</td>
<td>61 (30–74)</td>
<td>T2-T4, N0, M0</td>
<td>55 mo</td>
<td>MVAC, CMV, CMV + radiotherapy</td>
<td>≤ Ti</td>
<td>p53 (20%), p21 (20%), pRB (10%)</td>
<td>BIC</td>
<td>p53 (47%), p21 (52%), pRB (67%)</td>
<td>Positive p53 and p21 were independently associated with decreased survival with bladder preservation (both p<0.02).</td>
</tr>
<tr>
<td>Groosenhijk, 2016 [36]</td>
<td>P</td>
<td>94</td>
<td>NR</td>
<td>GC, GCb, MVAC</td>
<td>178 cancer-associated genes</td>
<td>GEP</td>
<td>BRCA2 mutation</td>
<td>NGS</td>
<td>NR</td>
<td>ESR2 mutations strongly associated with response (p=0.05), whereas ERCC2 mutation are not.</td>
<td></td>
</tr>
<tr>
<td>Grossman, 2006 [12]</td>
<td>P</td>
<td>94</td>
<td>64 (39-80)</td>
<td>T2-T4, N0, M0</td>
<td>NR</td>
<td>MVAC</td>
<td>NR</td>
<td>KE67 (1500 cells), p53 (20%), p21 (20%), pRB (19%)</td>
<td>BIC</td>
<td>NR</td>
<td>KE67 expression was not associated with DFS (HR 0.62; 95% CI 0.37-1.03, p=0.063) and OS (HR 0.74; 95% CI 0.44-1.24; p=0.25).</td>
</tr>
<tr>
<td>Hestianu, 2015 [19]</td>
<td>R</td>
<td>125</td>
<td>66 (IQR 2.1 - 3.0)</td>
<td>T1G3, T2−T4, Nx, M0</td>
<td>NR</td>
<td>Coplaint chemotherapy or doxorubicin + radiation therapy</td>
<td>pT0 or Ta/CIS</td>
<td>Epimprint and Survive</td>
<td>BIC</td>
<td>Epimprint (28), Survive (50)</td>
<td>OS: negative epimprint expression had significantly greater OS (71% vs 38%, p<0.001).</td>
</tr>
<tr>
<td>Hestianu, 2018 [45]</td>
<td>R</td>
<td>177</td>
<td>NR</td>
<td>T1G3, T2−T4, Nx, M0</td>
<td>NR</td>
<td>Coplaint chemotherapy</td>
<td>pT0 or Ta/CIS</td>
<td>CCT (or 20%)</td>
<td>BIC</td>
<td>COX-2 (or 24)</td>
<td>Improved OS with NAC treatment only in the CCT-20 negative group (p=0.009).</td>
</tr>
<tr>
<td>Hensley, 2019 [46]</td>
<td>R</td>
<td>69</td>
<td>NR</td>
<td>T2</td>
<td>NR</td>
<td>MVAC, GC</td>
<td>yrT0N0</td>
<td>E-cadherin (125), N-cadherin (34), b-catenin (125), vimentin (50.3),</td>
<td>BIC</td>
<td>NR</td>
<td>Expression errors showed increased N-cadherin (p=0.004), increased vimentin (p=0.028), increased b-catenin (p=0.015), decreased p-cofilin</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Author, publication year</th>
<th>Study design</th>
<th>Number of NAC patients</th>
<th>Age, years (median, range)</th>
<th>Stage</th>
<th>Follow-up, median (range)</th>
<th>NAC</th>
<th>Definition of response</th>
<th>Type of markers evaluated (cut-off value)</th>
<th>Methods</th>
<th>% of high expression (%)</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kato, 2010 [34]</td>
<td>P</td>
<td>37</td>
<td>67 (52-78)</td>
<td>T2-T4, N0, M0</td>
<td>NR</td>
<td>GCb</td>
<td>NR</td>
<td>a-tubulin (181), α-filin (214), P-comm (162), Zeb-1 (128), TUNEL (192)</td>
<td>No correlation</td>
<td>1.2 genes separated responders (9 patients) from non-responders (9 patients). Among these genes TP53-7 and SLCE2A1 were upregulated in non-responders.</td>
<td></td>
</tr>
<tr>
<td>Kiso, 2016 [47]</td>
<td>R</td>
<td>44</td>
<td>68 (42-81)</td>
<td>T2-T4, N0-1, M0</td>
<td>NR</td>
<td>GC, MVAC, Gob, Ca/Ca, or Cadhe E-cadherin, or Carba E-cadherin</td>
<td>gpT1</td>
<td>CTR-1</td>
<td>Her2 (19), ERBB2 gene (19)</td>
<td>IHC and/or FISH</td>
<td>None of the Her2 alterations were related to PR and OS. Genetic alterations in genes associated with cell cycle checkpoints and regulators (E2F3, JUN, FBXW7) suggests potential resistance.</td>
</tr>
<tr>
<td>Liu, 2017 [32]</td>
<td>R</td>
<td>127</td>
<td>NR</td>
<td>GC, MVAC</td>
<td>NR</td>
<td>GP T1</td>
<td>Cell-cycle and immune checkpoint regulation genes</td>
<td>DNA damage repair genes</td>
<td>NGS</td>
<td>Mutations in ATM, RB1, or FANCC were significantly associated with improved OS (p=0.040) and DSS (p=0.001) in patients with one or more mutations compared to those without.</td>
<td></td>
</tr>
<tr>
<td>Nomura, 2013 [48]</td>
<td>R</td>
<td>44</td>
<td>70 (43-84)</td>
<td>T1G3, T2N0M0</td>
<td>47 mo</td>
<td>Cisplatin/methotrexate/doxorubicin</td>
<td>PD-L1 CPS (≥ 10), TMB</td>
<td>PD-L1 CPS (67)</td>
<td>No correlation</td>
<td>The 5-y survival rates were also higher for both OS (89%, 95% CI 64-94% vs. 46%, 95% CI 25-74%) and DSS (90%, 95% CI 68-97.5% vs. 46%, 95% CI 31-64%) in patients with one or more mutations compared to those without.</td>
<td></td>
</tr>
<tr>
<td>Nomura, 2015 [49]</td>
<td>R</td>
<td>44</td>
<td>70 (43-84)</td>
<td>T1G3, T2N0M0</td>
<td>47 mo</td>
<td>Cisplatin/methotrexate/doxorubicin</td>
<td>DyRK2</td>
<td>IHC</td>
<td>DyRK2 (47.7)</td>
<td>IHC</td>
<td>No correlation</td>
</tr>
<tr>
<td>Ornstein, 2018 [50]</td>
<td>R</td>
<td>36</td>
<td>68 (44-83)</td>
<td>T0-T4, N0N+1, M0</td>
<td>NR</td>
<td>GC, GC, MVAC, others</td>
<td>p16INK4A</td>
<td>WES, IHC</td>
<td>DNA damage repair genes</td>
<td>No correlation</td>
<td>Tumor MEDC subtypes were not significantly associated with response.</td>
</tr>
<tr>
<td>Plimack, 2014 [29]</td>
<td>R</td>
<td>39</td>
<td>68 (44-83)</td>
<td>T2-T4, N0, M0</td>
<td>20 mo</td>
<td>GC, MVAC</td>
<td>NR</td>
<td>DNA damage repair genes (16, 17), TP53 (46), ARID1A/B (48), and KMT2B (47)</td>
<td>NGS</td>
<td>No correlation</td>
<td>Chromosomal Tp72 amplification (HES1, EGFR, ARS1, and KMT2B) related to non-response with a sensitivity and specificity of 71% and 100%, respectively, was associated with RFS (HR 4.0, 95% CI 1.46-9.97; p=0.001). Total count of CD3+ Tumor was a significant predictor of NAC response (p<0.001). No correlation observed with p53 and response to NAC.</td>
</tr>
</tbody>
</table>
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Author, publication year</th>
<th>Study design</th>
<th>Number of NAC patients</th>
<th>Age, years (median, range)</th>
<th>Stage</th>
<th>Follow-up, median (range)</th>
<th>NAC</th>
<th>Definition of response</th>
<th>Type of markers evaluated (cut off values)</th>
<th>Methods</th>
<th>% of high expression (%)</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinalak, 2015 [30]</td>
<td>P</td>
<td>34</td>
<td>68 (44–83)</td>
<td>T2-4, N0-1, M0</td>
<td>28.3 mo</td>
<td>MVAC</td>
<td>Docetaxel GC</td>
<td>p21, p50, p100</td>
<td>DNA sequencing (Illumina)</td>
<td>NR</td>
<td>In the discovery set, ATM, RB1, and FANCC alterations predicted PR (p < 0.001, 87% sensitivity, 100% specificity) and better OS (p = 0.007).</td>
</tr>
<tr>
<td>Breuleux, 2019 [28]</td>
<td>P</td>
<td>95</td>
<td>73 (68–77)</td>
<td>T2-T4, N0, M0</td>
<td>13.1 mo</td>
<td>Atezolizumab</td>
<td>NR</td>
<td>CD8+ T, TMB (≥ 10 mut/Mb), IHC, RNA and DNA sequencing (Illumina)</td>
<td>NR</td>
<td>87% sensitivity, 100% specificity) and better OS (p = 0.007).</td>
<td></td>
</tr>
<tr>
<td>Rubino, 2020 [13]</td>
<td>R</td>
<td>130</td>
<td>65 (33–84)</td>
<td>NR</td>
<td>NR</td>
<td>MVAC, AMVAC, and other</td>
<td>Ki-67 and PD-L1</td>
<td>IHC</td>
<td>NR</td>
<td>87% sensitivity, 100% specificity) and better OS (p = 0.007).</td>
<td></td>
</tr>
<tr>
<td>Saka, 1995 [11]</td>
<td>R</td>
<td>111</td>
<td>64 (30–79)</td>
<td>T2-T4, N0, M0</td>
<td>5.8 years</td>
<td>MVAC</td>
<td>≤ pT1</td>
<td>p53 (20%)</td>
<td>IHC</td>
<td>p53 overexpression had independent significance for survival (p<0.001), relative risk ratio, 3.4)</td>
<td></td>
</tr>
<tr>
<td>Seiler, 2017 [21]</td>
<td>R</td>
<td>269</td>
<td>61</td>
<td>T2-T4, N0-3, M0</td>
<td>NR</td>
<td>GC, MVAC, and other</td>
<td>pT<2N0</td>
<td>Whole transcriptome analysis NR</td>
<td>NR</td>
<td>Long-term survival was evident in 45% of patients with p52 overexpression (p = 0.07).</td>
<td></td>
</tr>
<tr>
<td>Seiler, 2018 [22]</td>
<td>R</td>
<td>134</td>
<td>61</td>
<td>NR</td>
<td>35.4 mo</td>
<td>Platinum-based</td>
<td>pT2N0</td>
<td>Whole transcriptome analysis NR</td>
<td>NR</td>
<td>Long-term survival was evident in 45% of patients with p52 overexpression (p = 0.07).</td>
<td></td>
</tr>
<tr>
<td>Takata, 2005 [53]</td>
<td>P</td>
<td>27</td>
<td>66 (53–77)</td>
<td>T2c–R, N0, M0</td>
<td>NR</td>
<td>MVAC</td>
<td>NR</td>
<td>Numerical prediction scoring system including 14 genes</td>
<td>Genome-wide expression profiling NR</td>
<td>14-gene expression system correctly identified the responders from non-responders (p<0.001).</td>
<td></td>
</tr>
<tr>
<td>Takata, 2007 [54]</td>
<td>P</td>
<td>22</td>
<td>66 (58–75)</td>
<td>T2c–R, N0, M0</td>
<td>NR</td>
<td>MVAC</td>
<td>NR</td>
<td>Numerical prediction scoring system including 14 genes</td>
<td>Genome-wide expression profiling NR</td>
<td>The scoring system correctly identified the responders for 19 of 22 cases.</td>
<td></td>
</tr>
<tr>
<td>Terehovatsila, 2017 [55]</td>
<td>P</td>
<td>68</td>
<td>65 (47–76)</td>
<td>T0-T4, N0/N+, M0</td>
<td>3.6 years (2.5 – 7.7)</td>
<td>GC, GCB</td>
<td>pT2N0</td>
<td>Whole transcriptome analysis NR</td>
<td>IHC</td>
<td>The scoring system correctly identified the responders for 19 of 22 cases.</td>
<td></td>
</tr>
<tr>
<td>Turker, 2019 [20]</td>
<td>R</td>
<td>119</td>
<td>NR</td>
<td>T1G3 or T2-T4, N0/N+, M0</td>
<td>NR</td>
<td>Capillar/desmoplasic or metachronous + radiotherapy</td>
<td>NR</td>
<td>Bcl-2 (10%)</td>
<td>IHC</td>
<td>Higher counts of CLEVER-1 + macrophages associated with poor OS (HR 3.76, 95% CI 1.10 – 12.82, p = 0.046).</td>
<td></td>
</tr>
<tr>
<td>Van Allen, 2014 [31]</td>
<td>P</td>
<td>50</td>
<td>62.5 (68.9)</td>
<td>T2-T4, N0/N+, M0</td>
<td>351 ± 363.2 days (≤ 3D)</td>
<td>GC, ddMVAC, ddOC, GC and antimet</td>
<td>pT0 or pTis</td>
<td>ERCC-2</td>
<td>WES</td>
<td>BRCC was the only significantly mutated gene enriched the capillar responders compared with none responders (p<0.01).</td>
<td></td>
</tr>
<tr>
<td>Virdi, 2016 [35]</td>
<td>R</td>
<td>41</td>
<td>NR</td>
<td>≥pT2</td>
<td>NR</td>
<td>Geno(cytosine, carbamoyl/ capatin, taxol)</td>
<td>pT0</td>
<td>let-7c</td>
<td>MRNA expression profiling, RT-PCR</td>
<td>NR</td>
<td>Higher let-7c expression had higher odds of responding (OR 2.493, 95% CI 1.12-5.546, p = 0.028).</td>
</tr>
<tr>
<td>Wahlin, 2019 [14]</td>
<td>R</td>
<td>65</td>
<td>T2-T4, N0/N+, M0-1</td>
<td>NR</td>
<td>pT0 or Tax/CIS</td>
<td>IHC</td>
<td>NR</td>
<td>Numerical prediction scoring system including 14 genes</td>
<td>Genome-wide expression profiling NR</td>
<td>Bcl-2 (3.8) negative expression had a significant increased OS (p<0.001). While Bcl-2 positive showed no difference (p=0.4).</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Patients</th>
<th>Age, years (median, range)</th>
<th>Stage Follow-up, NAC</th>
<th>Definition of Response</th>
<th>Type of markers evaluated (cut off values)</th>
<th>Methods</th>
<th>% of high expression</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Williams, 2009 [56]</td>
<td>R</td>
<td>89</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>MVAC</td>
<td>NR</td>
<td>Gene expression models, in vitro drug sensitivities, evaluation and microarray analyses.</td>
</tr>
<tr>
<td>Winters, 2018 [57]</td>
<td>R</td>
<td>62</td>
<td>61.5 (56-69)</td>
<td>T2-4, N0/+</td>
<td>NR</td>
<td>GC</td>
<td>mTOR (p=0.01) and pmTOR (p=0.03) expression analysis.</td>
<td></td>
</tr>
<tr>
<td>Xylinas, 2016 [58]</td>
<td>R</td>
<td>18</td>
<td>71 (60-77)</td>
<td>T2-4, N0/+</td>
<td>NR</td>
<td>GC</td>
<td>IHC analysis.</td>
<td></td>
</tr>
</tbody>
</table>

3.1. Cell-cycle and proliferation markers

Several studies in patients undergoing NAC demonstrated a correlation between pretreatment p53 (cell-cycle marker) overexpression at IHC and worse survival outcomes. For example, Sarkis et al. found that at 5.8 years after NAC, 41% of patients with p53 overexpression and 77% without overexpression (p=0.007) experienced death [11]. In contrast, Grossman et al. [12] reported that p53 expression was not associated with progression free (PFS) (HR=1.02; 95% CI 0.61-1.71; p=0.93) or overall (OS) survival (HR 1.48; 95% CI 0.87-2.53; p=0.15). Similarly, Ki-67 (proliferation marker) expression was associated with neither PFS (HR 0.62; 95% CI 0.37-1.03; p=0.063) nor OS (HR 0.74; 95% CI 0.44-1.24; p=0.25). Conversely, in a study comprising 130 patients, Rubino et al. [13] found that positive Ki-67 expression was associated with worse OS (HR 2.412, 95% CI, 1.076-5.408) as well as the absence of complete pathological response (p<0.001) and tumor downstaging (p<0.001). Interestingly, positive PD-L1 was associated with a lack of complete pathological response (OR = 0.16; 95% CI, 0.05-0.59; p=0.006) and tumor downstaging (OR = 0.29; 95% CI, 0.13-0.67; p=0.003) in 130 patients treated with NAC [13]. High infiltration of PD-1 in tumor was shown to be associated with the longest time to recurrence (all<0.05) [14].

3.2. DNA repair pathway alterations

A study assessing DNA repair pathway alterations found that a strong expression of ERCC1 was associated with pathological response in patients treated with neoadjuvant gemcitabine and cisplatin (GC) (p=0.01) [15]. Choueiri et al. [16] reported a pathological response (<pT1) rate of 43% in ERCC1-positive and 60% in ERCC1-negative UCB patients treated with dose dense MVAC.

3.3. Receptor tyrosine kinases

Yang et al. [15] reported that receptor tyrosine kinases (ERBB2, FGFR3, and PIK3CA) were more commonly altered in the responders (p<0.01) compared to the non-responders; FGFR3 mutations were significantly enriched in patients with a response to GC based regimen (p=0.01). In contrast, Kiss et al. [17] failed to report on the association between ERBB2 alterations and both pathological response (<pT2N0) or OS.

3.4. Biomarkers for combination of NAC and radiotherapy

Three studies reported IHC biomarkers in patients treated with combination of NAC and radiotherapy [18]–[20]. Positive p53 and p21 were independently associated with decreased disease free survival (DFS) in a retrospective study of 82 patients (p<0.005 and p<0.009, respectively); additionally, p53 overexpression was associated...
with poor OS (p<0.03) [18]. Alteration of the combination of p53 and p21 was a strong and unfavorable prognostic factor for both DFS (p<0.003) and OS (p<0.02). Hemdan et al. [19] demonstrated that patients with negative emmprin (extracellular matrix metalloproteinase inducer) expression had significantly greater OS in 125 UCB patients treated with radiotherapy and NAC (71% vs. 38%, p <0.001); cancer specific survival (CSS) in patients with negative and positive emmprin expression was 76% and 56%, respectively (p=0.027). Turker et al. [20] reported that patients exhibiting Bcl-2 negative expression had a significantly increased OS (p=0.009). In summary, pretreatment p53, p21, emmprin, and Bcl-2 have been suggested to exhibit predictive value in UCB patients treated with NAC and radiotherapy. However, further studies are needed to improve our understanding of the radiotherapy impact on inflammation status, which could affect biomarker expression.

According to the currently available literature, IHC biomarkers, including receptor tyrosine kinases and DNA repair pathway alterations, do not seem to clearly improve our prediction of pathological response or oncologic outcomes in UCB patients treated with NAC.

4. Gene expression and genomic DNA analyses

Nineteen studies provided data on the pretreatment biomarkers detected using gene expression analysis.

Over the last decade, molecular subtyping has led to distinct or partially overlapping molecular classifications of UCB. The arising molecular subtypes based on these classifications have been shown to be clinically useful in predicting the likelihood of therapy response. Whole transcriptome analysis suggests that luminal and basal tumors, compared to claudin-low or luminal-infiltrated tumors, might have the best response to platinum-based NAC (p<0.05) [21, 22]. Supporting this data, Choi et al. [23] reported response rate of 0% in p53-like, 40% - basal-like, and 67% - luminal-like subtypes (p=0.018). Efstathiou et al. [24] detected worse DSS and OS among patients with claudin-low tumors at transcriptome-wide gene expression profile analysis (p=0.01 and p=0.068, respectively). Taking together, luminal and basal tumor subtypes showed better NAC response, while claudin-low and luminal-infiltrated tumor subtypes did not.

Surprisingly, during comprehensive genomic profiling, molecular subtypes were not significantly associated with response (pT0N0) in both studies assessing NAC and Pembrolizumab (all p>0.2) [25]. Notably, immune signatures explored in this study had a significant association with the pathologic response in the PURE-01 cohort (all p<0.02), but not in the NAC cohort (p>0.7) [25]. Among other studies on predictive biomarkers for neoadjuvant immunotherapy, Necchi et al. [26] reported an association of tumor mutational burden (TMB) and PD-L1 combined positive score with both the pT0 and the pT1 response to Pembrolizumab (all p<0.03). In contrast, Bandini et al. [27] found that TMB was not associated with response (pT0N0) to Pembrolizumab on multivariable analysis (OR 1.04, 0.98-1.10, p=0.09). These results were supported by Powles et al. [28] in a study of 95 patients treated with neoadjuvant Atezolizumab. Summing up, in terms of neoadjuvant immune-checkpoint inhibitors (CDP), PD-L1 seems to maintain value as a predictive biomarker, while the utility of TMB and molecular subtypes is still controversial.

Among other predictive biomarkers detected with gene expression analysis, Plimack et al. analyzed molecular alterations in baseline tumor samples and did not find a correlation between p53 deleterious mutations and response to NAC [29]. Defects in DNA repair genes (ATM, RB1, and FANCC) were shown to predict pathological response in both MVAC (p<0.001) and dose dense GC (p=0.033) cohorts and at the same time with better OS after MVAC (p = 0.007) [30]. Another DNA repair pathway alteration (ERCC2) was also significantly mutated in cisplatin responders compared to non-responders (p<0.01) [31]. In contrast, genetic alterations in genes associated with cell cycle checkpoints and regulators (E2F3, JUN, FBXW7) suggested potential resistance [32].

Summing up, according to the currently available literature, alterations in DNA repair genes seem useful to predict pathological response and even oncologic outcomes in UCB patients treated with NAC. However, these data should be supported by future large-scale trials.

5. Polymerase chain reaction (PCR)

Three studies provided data on the pretreatment biomarkers detected at quantitative PCR [33]–[35].

In order to investigate the predictive role of the breast cancer susceptibility gene 1 (BRCA1) mRNA expression in UCB, tumor samples of 57 patients treated with GC or CMV (cisplatin, methotrexate, vinblastine) for UCB were retrospectively analyzed using quantitative PCR [33]. 66% of patients with low/intermediate BRCA1 levels attained a pathological response (pT0-1) compared to 22% of those with high BRCA1 levels. Furthermore, median survival was longer in patients with low BRCA1 expression (168 and 34 months, respectively, p=0.002). Thus, BRCA1 expression could be a useful tool for selecting UCB patients who are likely to benefit from cisplatin-based NAC. The authors suggested that taxane-based therapy for patients with high BRCA1 expression could be explored in further studies.

Among studies on other tissue-based biomarkers detected with PCR, Kato et al. [34] identified 12 candidates genes tested in tissue microarrays derived from baseline biopsies of 37 patients treated with NAC. Among these genes, IPO-7 and SLC22A18 were upregulated in non-responders. Vinall et al. [35] found that higher let-7c expression had higher odds of responding (OR 2.493, 95% CI 1.121-5.546, p=0.023), and let-7c levels allowed predicting
response (pT0) with an accuracy of 72%. Nevertheless, larger scale studies are certainly warranted to confirm and validate these results.

In general, quantitative PCR results for the expression of genes selected through microarray analysis might correctly classify cases with regard to their NAC response.

6. Next-generation sequencing (NGS)

Two studies provided data on the pretreatment biomarkers detected at NGS [36, 37].

In a study of Groenendijk et al. [36], ERBB2 was strongly associated with NAC response, defined as ypT0N0 (p=0.006), whereas ERCC2 mutations were not. Miron et al. [37] found that mutations in ATM, RB1, or FANCC were significantly associated with improved OS (p=0.0043) and DSS (p=0.0015) in 58 patients treated with NAC (GC or MVAC). The authors hypothesized that, based on understanding the function of ATM, RB1, and FANCC and their involvement in DNA damage repair, mutations in these genes sensitize tumors to cisplatin because of a baseline deficiency in DNA repair.

7. Discussion

This review on the impact of using pretreatment tissue-based biomarkers to select patients who are most likely to benefit from NAST generated several important findings.

First of all, there is no clear benefit of using predictive biomarkers, including receptor tyrosine kinases and DNA repair pathway alterations, detected at IHC to predict pathologic response or oncologic outcomes after NAC. The controversial results can be explained by the small sample size as well as the retrospective nature of most included studies, leading to heterogeneity between NAST cohorts, differences between NAC settings, and definitions such as that of pathologic response as well as non-standardized sample collections and arbitrary cut-offs during assay analysis. Moreover, we believe that for the initial development of a putative marker model as well as markers with combinations, it is essential to reflect the molecular understanding of the tumor and its microenvironment.

We found out that specific genomic alterations in DNA repair genes (e.g., ATM, RB1, FANCC, and ERCC2) provide predictive value for predicting pathologic response and oncologic outcomes after NAC. Quantitative PCR results for the expression of genes selected through microarray analysis (e.g., BRCA1) could correctly classify cases with regard to their NAC response. However, it should be stressed that the utility of genetic profiling has historically been limited to small gene panels and costly molecular diagnostics. Hence, biomarkers detected at IHC can still be a simple and less expensive alternative. To facilitate inclusion into routine urological practice, precise identification of tissue-based biomarkers with accurate detection technology seems to be of necessity. The continuous improvement in high throughput technologies, the development of novel analytical tools based on artificial intelligence need for biomarker-driven preclinical and clinical trials. Nowadays, NGS is becoming a complementary diagnostic tool, guiding the decision-making progress with the goal of facilitating precision medicine. We believe that with the incorporation of NGS, physicians will have the ability to obtain a more comprehensive understanding of the molecular alterations driving an individual urothelial cancer [38].

In terms of predicting the likelihood of responding to neoadjuvant CPI, TURBT PD-L1 seems to have value as an accurate but not ideal biomarker [39]. Indeed, a higher pathologic response rate was shown in patients with PD-L1 positive tumors compared to those with PD-L1 negative tumors; while the utility of TMB or molecular subtypes in patients treated with neoadjuvant CPI is still unclear, at best. Moreover, it was recently shown that indicate molecular subtypes may not be useful due to tumor heterogeneity and various models of changes in molecular profiles before or during progression [40, 41]. Understanding the stability of molecular subtypes over time and the subtype heterogeneity within tumors and patients remains challenging. Future areas certainly include conceptual molecular pathways (e.g., FGFR3 pathway) that would allow for targeted therapy approaches. New clinical trials that use molecularly guided therapy selection will determine the clinical efficacy of the integration of genomics and other molecular predictive biomarkers to guide daily therapeutic decision-making.

Our systematic review is not free from limitations. First, the inconsistencies in evaluation of the tissue-based biomarkers among the enrolled trials could lead to potential confounding and bias. The second limitation is the retrospective and heterogeneous nature of most included studies which also suffered from single-center designs. Third, the small cohort size of most of the included studies may have limited their power to detect a statistically and/or clinically significant associations. Therefore, well-designed comparative trials with larger cohorts are required to validate some of the most promising findings inherent to the present systematic review.

8. Conclusions

Pretreatment tissue-based biomarkers still hold promise in selecting the ideal UCB patient who is most likely to benefit from NAST. However, due to the lack of prospective, well-designed, large scale data, no molecular biomarkers could be recommended for the routine use. The present systematic review offers a robust framework to enable the testing and validation of predictive biomarkers in future prospective clinical trials.

Ethical standards

Not applicable.
Declaration of Competing Interest

None

Acknowledgements

Ekaterina Laukhtina and Victor M. Schuettfort are supported by the EUSP Scholarship of the European Association of Urology (EAU). Nico C. Grossmann is supported by the Zurich Cancer League.

References

